Georgios Lukes-Gerakopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426692/publications.pdf Version: 2024-02-01

GEORGIOS

#	Article	IF	CITATIONS
1	Adiabatic equatorial inspirals of a spinning body into a Kerr black hole. Physical Review D, 2022, 105, .	4.7	10
2	Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves. , 2022, , 1625-1668.		0
3	Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and their asymptotic gravitational-wave fluxes. Physical Review D, 2021, 103, .	4.7	16
4	Spinning test body orbiting around a Schwarzschild black hole: Comparing spin supplementary conditions for circular equatorial orbits. Physical Review D, 2021, 104, .	4.7	10
5	Probing the nature of black holes: Deep in the mHz gravitational-wave sky. Experimental Astronomy, 2021, 51, 1385-1416.	3.7	29
6	Nonlinear Effects in EMRI Dynamics and Their Imprints on Gravitational Waves. , 2021, , 1-44.		3
7	Dynamics of classes of barotropic fluids in spatially curved FRW spacetimes. Physical Review D, 2020, 101, .	4.7	6
8	Growth of resonances and chaos for a spinning test particle in the Schwarzschild background. Physical Review D, 2020, 101, .	4.7	32
9	Classes of nonminimally coupled scalar fields in spatially curved FRW spacetimes. Physical Review D, 2019, 99, .	4.7	10
10	Hamiltonians and canonical coordinates for spinning particles in curved space-time. Classical and Quantum Gravity, 2019, 36, 075003.	4.0	26
11	Publisher's Note: Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes [Phys. Rev. D 94 , 104010 (2016)]. Physical Review D, 2019, 100, .	4.7	0
12	Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. III. The spinning test-body terms. Physical Review D, 2019, 100, .	4.7	21
13	Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition. Physical Review D, 2018, 97, .	4.7	29
14	Recurrence analysis as a tool to study chaotic dynamics of extreme mass ratio inspiral in signal with noise. International Journal of Modern Physics D, 2018, 27, 1850010.	2.1	12
15	Spinning test body orbiting around a Kerr black hole: Circular dynamics and gravitational-wave fluxes. Physical Review D, 2017, 96, .	4.7	44
16	On integrability of certain rank 2 sub-Riemannian structures. Regular and Chaotic Dynamics, 2017, 22, 502-519.	0.8	3
17	Time parameterizations and spin supplementary conditions of the Mathisson-Papapetrou-Dixon equations. Physical Review D, 2017, 96, .	4.7	17
18	Dynamics and chaos in the unified scalar field cosmology. II. System in a finite box. Physical Review D, 2017, 95, .	4.7	2

GEORGIOS

IF # ARTICLE CITATIONS Spinning particles moving around black holes: Integrability and chaos., 2017,,. Dynamics of a spinning particle in a linear in spin Hamiltonian approximation. Physical Review D, 2016, 20 4.7 16 94, . Comparing Hamiltonians of a spinning test particle for different tetrad fields. Physical Review D, 2016, 4.7 16 93, . Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a 22 4.7 43 rotating black hole. Physical Review D, 2016, 93, . Comment on $\hat{a} \in \hat{c}$ Chaotic orbits for spinning particles in Schwarzschild spacetime $\hat{a} \in \hat{c}$ Physical Review D, 4.7 Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes. Physical Review D, 2016, 94, . 24 4.7 56 Investigating spinning test particles: Spin supplementary conditions and the Hamiltonian formalism. 39 Physical Review D, 2014, 90, . Relativistic astrophysics at GR20. General Relativity and Gravitation, 2014, 46, 1. 26 2.0 1 Adjusting chaotic indicators to curved spacetimes. Physical Review D, 2014, 89, . 14 Comment on "Nonexistence of the final first integral in the Zipoy-Voorhees space-time― Physical 28 4.7 1 Review D, 2013, 88, . Testing the existence of regions of stable orbits at small radii around black hole candidates. Physical 4.7 24 Review D, 2013, 87, . Mind the Resonances: Final stages of accretion into bumpy black holes. Journal of Physics: Conference 30 0.4 3 Series, 2013, 453, 012005. Nonintegrability of the Zipoy-Voorhees metric. Physical Review D, 2012, 86, . Symmetric integrator for nonintegrable Hamiltonian relativistic systems. Physical Review D, 2012, 86, . 32 4.7 26 Periodic orbits and escapes in dynamical systems. Celestial Mechanics and Dynamical Astronomy, 2012, 1.4 23 113, 255-278. Searching for non-Kerr objects. Journal of Physics: Conference Series, 2011, 283, 012002. 34 0.4 0 ORBITS IN A NON-KERR DYNAMICAL SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 2261-2277. 36 Observable signature of a background deviating from the Kerr metric. Physical Review D, 2010, 81, . 4.7 75

GEORGIOS

#	Article	IF	CITATIONS
37	How to Observe a Non-Kerr Spacetime Using Gravitational Waves. Physical Review Letters, 2009, 103, 111101.	7.8	84
38	An observational criterion to look for an inspiral in a non-Kerr spacetime. Journal of Physics: Conference Series, 2009, 189, 012002.	0.4	0
39	The production of Tsallis entropy in the limit of weak chaos and a new indicator of chaoticity. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 1907-1925.	2.6	23
40	Dynamics and constraints of the unified dark matter flat cosmologies. Physical Review D, 2008, 78, .	4.7	19
41	Dynamics and chaos in the unified scalar field cosmology. Physical Review D, 2008, 77, .	4.7	13