
## **Roland Riek**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426581/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 3D structure of Alzheimer's amyloid-β(1–42) fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17342-17347.                                                                                              | 7.1  | 1,859     |
| 2  | In vivo demonstration that α-synuclein oligomers are toxic. Proceedings of the National Academy of<br>Sciences of the United States of America, 2011, 108, 4194-4199.                                                                                      | 7.1  | 1,252     |
| 3  | Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core.<br>Science, 2008, 319, 1523-1526.                                                                                                                        | 12.6 | 928       |
| 4  | Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules. Science, 2009, 325, 328-332.                                                                                                                                   | 12.6 | 903       |
| 5  | Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proceedings of the National<br>Academy of Sciences of the United States of America, 2016, 113, E4976-84.                                                                        | 7.1  | 712       |
| 6  | Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3487-3492.                                                                          | 7.1  | 708       |
| 7  | The fold of α-synuclein fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8637-8642.                                                                                                                    | 7.1  | 499       |
| 8  | Biology of Amyloid: Structure, Function, andÂRegulation. Structure, 2010, 18, 1244-1260.                                                                                                                                                                   | 3.3  | 496       |
| 9  | Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.                                                                                                                                                                | 12.6 | 453       |
| 10 | Cryo-EM structure of alpha-synuclein fibrils. ELife, 2018, 7, .                                                                                                                                                                                            | 6.0  | 444       |
| 11 | α-Synuclein aggregation nucleates through liquid–liquid phase separation. Nature Chemistry, 2020, 12,<br>705-716.                                                                                                                                          | 13.6 | 440       |
| 12 | Correlation of structural elements and infectivity of the HET-s prion. Nature, 2005, 435, 844-848.                                                                                                                                                         | 27.8 | 433       |
| 13 | The activities of amyloids from a structural perspective. Nature, 2016, 539, 227-235.                                                                                                                                                                      | 27.8 | 386       |
| 14 | Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.                                                                                                                                                       | 38.1 | 345       |
| 15 | NMR Structure of Mistic, a Membrane-Integrating Protein for Membrane Protein Expression. Science, 2005, 307, 1317-1321.                                                                                                                                    | 12.6 | 234       |
| 16 | The Presence of an Air–Water Interface Affects Formation and Elongation of α-Synuclein Fibrils.<br>Journal of the American Chemical Society, 2014, 136, 2866-2875.                                                                                         | 13.7 | 229       |
| 17 | Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. ELife, 2019, 8, .                                                                                                                          | 6.0  | 220       |
| 18 | NMR studies in aqueous solution fail to identify significant conformational differences between the<br>monomeric forms of two Alzheimer peptides with widely different plaque-competence, Aβ(1-40)oxand<br>Aβ(1-42)ox. FEBS Journal, 2001, 268, 5930-5936. | 0.2  | 209       |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Functional Amyloids. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033860.                                                                                     | 5.5  | 200       |
| 20 | Mechanism of Membrane Interaction and Disruption by α-Synuclein. Journal of the American Chemical<br>Society, 2011, 133, 19366-19375.                                   | 13.7 | 198       |
| 21 | Amyloid as a Depot for the Formulation of Long-Acting Drugs. PLoS Biology, 2008, 6, e17.                                                                                | 5.6  | 196       |
| 22 | Bacterial Inclusion Bodies Contain Amyloid-Like Structure. PLoS Biology, 2008, 6, e195.                                                                                 | 5.6  | 189       |
| 23 | Regulation of α-synuclein by chaperones in mammalian cells. Nature, 2020, 577, 127-132.                                                                                 | 27.8 | 184       |
| 24 | Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Scientific Reports, 2015, 5, 9228.                   | 3.3  | 172       |
| 25 | The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell, 2021, 184, 4857-4873.                                                             | 28.9 | 166       |
| 26 | Transnitrosylation of XIAP Regulates Caspase-Dependent Neuronal Cell Death. Molecular Cell, 2010, 39,<br>184-195.                                                       | 9.7  | 162       |
| 27 | Protocols for the Sequential Solidâ€State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa<br>Protein: HETâ€s(1â€227). ChemBioChem, 2010, 11, 1543-1551.      | 2.6  | 126       |
| 28 | The Mechanism of Toxicity in HET-S/HET-s Prion Incompatibility. PLoS Biology, 2012, 10, e1001451.                                                                       | 5.6  | 123       |
| 29 | Conformational dynamics of the KcsA potassium channel governs gating properties. Nature<br>Structural and Molecular Biology, 2007, 14, 1089-1095.                       | 8.2  | 121       |
| 30 | On the Possible Amyloid Origin of Protein Folds. Journal of Molecular Biology, 2012, 421, 417-426.                                                                      | 4.2  | 119       |
| 31 | Uncovering the Mechanism of Aggregation of Human Transthyretin. Journal of Biological Chemistry, 2015, 290, 28932-28943.                                                | 3.4  | 117       |
| 32 | Structure–activity relationship of amyloid fibrils. FEBS Letters, 2009, 583, 2610-2617.                                                                                 | 2.8  | 114       |
| 33 | High-Resolution Solid-State NMR Spectroscopy of the Prion Protein HET-s in Its Amyloid<br>Conformation. Angewandte Chemie - International Edition, 2005, 44, 2441-2444. | 13.8 | 109       |
| 34 | Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein<br>A-I. Nature Structural and Molecular Biology, 2017, 24, 187-193.  | 8.2  | 105       |
| 35 | NMR TECHNIQUES FOR VERY LARGE PROTEINS AND RNAS IN SOLUTION. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 319-342.                                 | 18.3 | 95        |
| 36 | Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs.<br>Nature Structural and Molecular Biology, 2012, 19, 1053-1057.    | 8.2  | 92        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Exact Distances and Internal Dynamics of Perdeuterated Ubiquitin from NOE Buildups. Journal of the American Chemical Society, 2009, 131, 17215-17225.                                                  | 13.7 | 91        |
| 38 | Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation. Molecular Cell, 2015, 57, 1011-1021.                                               | 9.7  | 88        |
| 39 | Micelles, Bicelles, and Nanodiscs: Comparing the Impact of Membrane Mimetics on Membrane Protein<br>Backbone Dynamics. Angewandte Chemie - International Edition, 2017, 56, 380-383.                   | 13.8 | 86        |
| 40 | Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9111-9116. | 7.1  | 83        |
| 41 | Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes. ACS Chemical Neuroscience, 2013, 4, 1057-1061.                                                                               | 3.5  | 75        |
| 42 | Peptide Amyloids in the Origin of Life. Journal of Molecular Biology, 2018, 430, 3735-3750.                                                                                                            | 4.2  | 75        |
| 43 | Emerging Structural Understanding of Amyloid Fibrils by Solid-State NMR. Trends in Biochemical Sciences, 2017, 42, 777-787.                                                                            | 7.5  | 73        |
| 44 | Dynamic Assembly and Disassembly of Functional β-Endorphin Amyloid Fibrils. Journal of the American<br>Chemical Society, 2016, 138, 846-856.                                                           | 13.7 | 71        |
| 45 | Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696.                                                                                                              | 2.5  | 67        |
| 46 | Towards Prebiotic Catalytic Amyloids Using High Throughput Screening. PLoS ONE, 2015, 10, e0143948.                                                                                                    | 2.5  | 67        |
| 47 | Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions. Angewandte<br>Chemie - International Edition, 2016, 55, 11609-11613.                                                | 13.8 | 65        |
| 48 | On-Surface Aggregation of α-Synuclein at Nanomolar Concentrations Results in Two Distinct Growth<br>Mechanisms. ACS Chemical Neuroscience, 2013, 4, 408-417.                                           | 3.5  | 61        |
| 49 | A prebiotic template-directed peptide synthesis based on amyloids. Nature Communications, 2018, 9, 234.                                                                                                | 12.8 | 61        |
| 50 | Structural insights into α-synuclein monomer–fibril interactions. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                                     | 7.1  | 60        |
| 51 | Multidimensional Structure–Activity Relationship of a Protein in Its Aggregated States. Angewandte<br>Chemie - International Edition, 2010, 49, 3904-3908.                                             | 13.8 | 54        |
| 52 | Infectious and Noninfectious Amyloids of the HETâ€s(218–289) Prion Have Different NMR Spectra.<br>Angewandte Chemie - International Edition, 2008, 47, 5839-5841.                                      | 13.8 | 51        |
| 53 | Novel sst2-Selective Somatostatin Agonists. Three-Dimensional Consensus Structure by NMR. Journal of Medicinal Chemistry, 2006, 49, 4487-4496.                                                         | 6.4  | 49        |
| 54 | Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles. Journal of Biological<br>Chemistry, 2016, 291, 8516-8527.                                                                | 3.4  | 49        |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Three-Dimensional Structures of Amyloids. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023572.                                                                                 | 5.5  | 48        |
| 56 | Relaxation Matrix Analysis of Spin Diffusion for the NMR Structure Calculation with eNOEs. Journal of Chemical Theory and Computation, 2012, 8, 3483-3492.                                  | 5.3  | 47        |
| 57 | Lipid Internal Dynamics Probed in Nanodiscs. ChemPhysChem, 2017, 18, 2651-2657.                                                                                                             | 2.1  | 47        |
| 58 | NMR-Based Determination of the 3D Structure of the Ligand–Protein Interaction Site without Protein<br>Resonance Assignment. Journal of the American Chemical Society, 2016, 138, 4393-4400. | 13.7 | 46        |
| 59 | The three-dimensional structure of human β-endorphin amyloid fibrils. Nature Structural and<br>Molecular Biology, 2020, 27, 1178-1184.                                                      | 8.2  | 46        |
| 60 | Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability. PLoS Pathogens, 2014, 10, e1004158.                                      | 4.7  | 45        |
| 61 | Solution NMR Studies of Recombinant Aβ(1–42): From the Presence of a Micellar Entity to Residual<br>βâ€5heet Structure in the Soluble Species. ChemBioChem, 2015, 16, 659-669.              | 2.6  | 42        |
| 62 | Amyloid Fibril Polymorphism: Almost Identical on the Atomic Level, Mesoscopically Very Different.<br>Journal of Physical Chemistry B, 2017, 121, 1783-1792.                                 | 2.6  | 41        |
| 63 | The HET-S/s Prion Motif in the Control of Programmed Cell Death. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023515.                                                              | 5.5  | 40        |
| 64 | The Exact NOE as an Alternative in Ensemble Structure Determination. Biophysical Journal, 2016, 110, 113-126.                                                                               | 0.5  | 39        |
| 65 | Mass Photometry of Membrane Proteins. CheM, 2021, 7, 224-236.                                                                                                                               | 11.7 | 39        |
| 66 | Detergent/Nanodisc Screening for High-Resolution NMR Studies of an Integral Membrane Protein<br>Containing a Cytoplasmic Domain. PLoS ONE, 2013, 8, e54378.                                 | 2.5  | 38        |
| 67 | Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Science Advances, 2018, 4, eaau4130.                                                | 10.3 | 38        |
| 68 | Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.<br>Nature Communications, 2018, 9, 1836.                                                      | 12.8 | 34        |
| 69 | Novel sst4-Selective Somatostatin (SRIF) Agonists. 4. Three-Dimensional Consensus Structure by NMR.<br>Journal of Medicinal Chemistry, 2003, 46, 5606-5618.                                 | 6.4  | 32        |
| 70 | Quantitative determination of NOE rates in perdeuterated and protonated proteins: Practical and theoretical aspects. Journal of Magnetic Resonance, 2010, 204, 290-302.                     | 2.1  | 32        |
| 71 | Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein<br>Science, 2014, 23, 851-856.                                                            | 7.6  | 32        |
| 72 | eNORA2 Exact NOE Analysis Program. Journal of Chemical Theory and Computation, 2017, 13, 4336-4346.                                                                                         | 5.3  | 32        |

Roland Riek

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Infectious Alzheimer's disease?. Nature, 2006, 444, 429-431.                                                                                                                                     | 27.8 | 31        |
| 74 | Towards a true protein movie: A perspective on the potential impact of the ensemble-based structure determination using exact NOEs. Journal of Magnetic Resonance, 2014, 241, 53-59.             | 2.1  | 31        |
| 75 | Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chemical<br>Neuroscience, 2018, 9, 475-481.                                                                  | 3.5  | 31        |
| 76 | A Structural Ensemble for the Enzyme Cyclophilin Reveals an Orchestrated Mode of Action at Atomic<br>Resolution. Angewandte Chemie - International Edition, 2015, 54, 11657-11661.               | 13.8 | 30        |
| 77 | A cullin-RING ubiquitin ligase targets exogenous α-synuclein and inhibits Lewy body–like pathology.<br>Science Translational Medicine, 2019, 11, .                                               | 12.4 | 30        |
| 78 | A Receptor-based Switch that Regulates Anthrax Toxin Pore Formation. PLoS Pathogens, 2011, 7, e1002354.                                                                                          | 4.7  | 29        |
| 79 | Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Frontiers in Molecular Biosciences, 2021, 8, 653148.                      | 3.5  | 29        |
| 80 | Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of<br>Parkinson's disease. Science Translational Medicine, 2021, 13, eabe7099.                      | 12.4 | 29        |
| 81 | Multiple-state ensemble structure determination from eNOE spectroscopy. Molecular Physics, 2013, 111, 437-454.                                                                                   | 1.7  | 28        |
| 82 | Pseudomultidimensional NMR by Spin-State Selective Off-Resonance Decoupling. Journal of the<br>American Chemical Society, 2003, 125, 16104-16113.                                                | 13.7 | 23        |
| 83 | Extending the eNOE data set of large proteins by evaluation of NOEs with unresolved diagonals.<br>Journal of Biomolecular NMR, 2015, 62, 63-69.                                                  | 2.8  | 23        |
| 84 | Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs<br>Solution-State Methods. Journal of Physical Chemistry B, 2017, 121, 7671-7680.                    | 2.6  | 23        |
| 85 | Lipid- and Cholesterol-Mediated Time-Scale-Specific Modulation of the Outer Membrane Protein X<br>Dynamics in Lipid Bilayers. Journal of the American Chemical Society, 2018, 140, 15402-15411.  | 13.7 | 23        |
| 86 | Non-invasive imaging of tau-targeted probe uptake by whole brain multi-spectral optoacoustic<br>tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2137-2152.     | 6.4  | 23        |
| 87 | Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions. Angewandte<br>Chemie, 2016, 128, 11781-11785.                                                                 | 2.0  | 22        |
| 88 | Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomedical Optics Express, 2020, 11, 4989.                      | 2.9  | 22        |
| 89 | Heterodimerization of p45–p75 Modulates p75 Signaling: Structural Basis and Mechanism of Action.<br>PLoS Biology, 2014, 12, e1001918.                                                            | 5.6  | 21        |
| 90 | Fast NMRâ€Based Determination of the 3D Structure of the Binding Site of Protein–Ligand Complexes<br>with Weak Affinity Binders. Angewandte Chemie - International Edition, 2017, 56, 5208-5211. | 13.8 | 21        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Nuclear Magnetic Resonance Solution Structure and Functional Behavior of the Human Proton<br>Channel. Biochemistry, 2019, 58, 4017-4027.                                                                       | 2.5  | 21        |
| 92  | Protein Allostery at Atomic Resolution. Angewandte Chemie - International Edition, 2020, 59, 22132-22139.                                                                                                      | 13.8 | 21        |
| 93  | The Dynamic Basis for Signal Propagation in Human Pin1-WW. Structure, 2016, 24, 1464-1475.                                                                                                                     | 3.3  | 20        |
| 94  | Mistic: Cellular localization, solution behavior, polymerization, and fibril formation. Protein Science, 2009, 18, 1564-1570.                                                                                  | 7.6  | 19        |
| 95  | Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics. Journal of Structural Biology, 2015, 191, 306-317.                                      | 2.8  | 19        |
| 96  | Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid. Angewandte Chemie -<br>International Edition, 2021, 60, 4545-4550.                                                                  | 13.8 | 19        |
| 97  | Solid-state NMR sequential assignment of an Amyloid-β(1–42) fibril polymorph. Biomolecular NMR<br>Assignments, 2016, 10, 269-276.                                                                              | 0.8  | 18        |
| 98  | Highâ€density lipoproteinâ€like particle formation of Synuclein variants. FEBS Letters, 2017, 591, 304-311.                                                                                                    | 2.8  | 17        |
| 99  | Temperature Dependence of1HN–1HNDistances in Ubiquitin As Studied by Exact Measurements of NOEs.<br>Journal of Physical Chemistry B, 2011, 115, 7648-7660.                                                     | 2.6  | 16        |
| 100 | Stereospecific assignments in proteins using exact NOEs. Journal of Biomolecular NMR, 2013, 57, 211-218.                                                                                                       | 2.8  | 16        |
| 101 | Solution NMR Structure and Functional Analysis of the Integral Membrane Protein YgaP from Escherichia coli. Journal of Biological Chemistry, 2014, 289, 23482-23503.                                           | 3.4  | 16        |
| 102 | Probing Ion Binding in the Selectivity Filter of the KcsA Potassium Channel. Journal of the American<br>Chemical Society, 2019, 141, 7391-7398.                                                                | 13.7 | 13        |
| 103 | S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein. Journal of<br>Molecular Biology, 2016, 428, 3737-3751.                                                                 | 4.2  | 12        |
| 104 | Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis<br>Rescues from Alpha-Synuclein Toxicity. Cell Systems, 2019, 9, 309-320.e8.                                 | 6.2  | 12        |
| 105 | 3d Trosy-HncaCodedcb and Trosy-HncaCodedco Experiments: Triple Resonance nmr Experiments With<br>two Sequential Connectivity Pathways and High Sensitivity. Journal of Biomolecular NMR, 2004, 28,<br>289-294. | 2.8  | 11        |
| 106 | Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3. Data in Brief, 2015, 5, 99-106.                                                           | 1.0  | 11        |
| 107 | More than a Rumor Spreads in Parkinson's Disease. Frontiers in Human Neuroscience, 2016, 10, 608.                                                                                                              | 2.0  | 11        |
| 108 | Structural Studies of Amyloids by Quenched Hydrogen–Deuterium Exchange by NMR. Methods in<br>Molecular Biology, 2012, 849, 185-198.                                                                            | 0.9  | 11        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fast multidimensional NMR spectroscopy by spin-state selective off-resonance decoupling (SITAR).<br>Magnetic Resonance in Chemistry, 2006, 44, S196-S205.                                                                        | 1.9  | 10        |
| 110 | Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement<br>in an HN(CO)CA experiment for large proteins. Journal of Magnetic Resonance, 2011, 209, 310-314.                              | 2.1  | 10        |
| 111 | Discrete Three-dimensional Representation of Macromolecular Motion from eNOE-based Ensemble<br>Calculation. Chimia, 2012, 66, 787.                                                                                               | 0.6  | 10        |
| 112 | Expression and Functional Characterization of Membrane-Integrated Mammalian Corticotropin<br>Releasing Factor Receptors 1 and 2 in Escherichia coli. PLoS ONE, 2014, 9, e84013.                                                  | 2.5  | 10        |
| 113 | Cooperative Induction of Ordered Peptide and Fatty Acid Aggregates. Biophysical Journal, 2018, 115, 2336-2347.                                                                                                                   | 0.5  | 10        |
| 114 | Atto Thio 12 as a promising dye for photo-CIDNP. Journal of Chemical Physics, 2019, 151, 234201.                                                                                                                                 | 3.0  | 10        |
| 115 | In-Cell NMR of Intrinsically Disordered Proteins in Mammalian Cells. Methods in Molecular Biology, 2020, 2141, 873-893.                                                                                                          | 0.9  | 10        |
| 116 | Prebiotically Plausible Autocatalytic Peptide Amyloids. Chemistry - A European Journal, 2022, 28, e202103841.                                                                                                                    | 3.3  | 10        |
| 117 | Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation.<br>Journal of Biomolecular NMR, 2010, 46, 135-147.                                                                           | 2.8  | 9         |
| 118 | NOEâ€Đerived Methyl Distances from a 360 kDa Proteasome Complex. Chemistry - A European Journal,<br>2018, 24, 2270-2276.                                                                                                         | 3.3  | 9         |
| 119 | Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid. Angewandte Chemie, 2021, 133, 4595-4600.                                                                                                              | 2.0  | 9         |
| 120 | Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto ellular Compartment.<br>Angewandte Chemie - International Edition, 2021, 60, 5561-5568.                                                             | 13.8 | 9         |
| 121 | Molecular features toward high photo-CIDNP hyperpolariztion explored through the oxidocyclization of tryptophan. Physical Chemistry Chemical Physics, 2021, 23, 6641-6650.                                                       | 2.8  | 9         |
| 122 | Chemical shift-dependent apparent scalar couplings: an alternative concept of chemical shift<br>monitoring in multi-dimensional NMR experiments. Journal of Biomolecular NMR, 2003, 25, 281-290.                                 | 2.8  | 8         |
| 123 | 15N transverse relaxation measurements for the characterization of µs–ms dynamics are deteriorated<br>by the deuterium isotope effect on 15N resulting from solvent exchange. Journal of Biomolecular<br>NMR, 2018, 72, 125-137. | 2.8  | 8         |
| 124 | Protein—ligand structure determination with the NMR molecular replacement tool, NMR2. Journal of<br>Biomolecular NMR, 2020, 74, 633-642.                                                                                         | 2.8  | 8         |
| 125 | α-Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X-ray Reflectivity. ACS Chemical<br>Neuroscience, 2015, 6, 374-379.                                                                                       | 3.5  | 7         |
| 126 | α-Synuclein lipoprotein nanoparticles. Nanotechnology Reviews, 2017, 6, 105-110.                                                                                                                                                 | 5.8  | 7         |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Structural strains of misfolded tau protein define different diseases. Nature, 2021, 598, 264-265.                                                                                            | 27.8 | 7         |
| 128 | Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph. PLoS<br>ONE, 2017, 12, e0172862.                                                                   | 2.5  | 6         |
| 129 | Optimization and validation of multi-state NMR protein structures using structural correlations.<br>Journal of Biomolecular NMR, 2022, , 1.                                                   | 2.8  | 6         |
| 130 | Three-dimensional structures of the prion protein and its doppel. Clinics in Laboratory Medicine, 2003, 23, 209-225.                                                                          | 1.4  | 5         |
| 131 | Intermolecular Detergent–Membrane Protein NOEs for the Characterization of the Dynamics of<br>Membrane Protein–Detergent Complexes. Journal of Physical Chemistry B, 2014, 118, 14288-14301.  | 2.6  | 5         |
| 132 | Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form. Biomolecular<br>NMR Assignments, 2016, 10, 259-268.                                                     | 0.8  | 5         |
| 133 | Rational Structureâ€Based Design of Fluorescent Probes for Amyloid Folds. ChemBioChem, 2019, 20,<br>1161-1166.                                                                                | 2.6  | 5         |
| 134 | Exploration of the close chemical space of tryptophan and tyrosine reveals importance of hydrophobicity in CW-photo-CIDNP performances. Magnetic Resonance, 2021, 2, 321-329.                 | 1.9  | 5         |
| 135 | PDBcor: An automated correlation extraction calculator for multi-state protein structures.<br>Structure, 2022, 30, 646-652.e2.                                                                | 3.3  | 5         |
| 136 | Carbonyl Sulfide as a Prebiotic Activation Agent for Stereo- and Sequence-Selective,<br>Amyloid-Templated Peptide Elongation. Origins of Life and Evolution of Biospheres, 2019, 49, 213-224. | 1.9  | 4         |
| 137 | Causality in Discrete Time Physics Derived from Maupertuis Reduced Action Principle. Entropy, 2021, 23, 1212.                                                                                 | 2.2  | 4         |
| 138 | Fast NMRâ€Based Determination of the 3D Structure of the Binding Site of Protein–Ligand Complexes with Weak Affinity Binders. Angewandte Chemie, 2017, 129, 5292-5295.                        | 2.0  | 2         |
| 139 | PrÃ <b>b</b> iotische Peptidâ€ <del>S</del> ynthese und spontane Amyloidâ€Bildung im Inneren eines protozellulÃ <b>¤</b> en<br>Kompartiments. Angewandte Chemie, 2021, 133, 5621-5629.        | 2.0  | 2         |
| 140 | The Neurite Outgrowth Inhibitory Nogo-A-Δ20 Region Is an Intrinsically Disordered Segment<br>Harbouring Three Stretches with Helical Propensity. PLoS ONE, 2016, 11, e0161813.                | 2.5  | 2         |
| 141 | The production of recombinant 15N, 13C-labelled somatostatin 14 for NMR spectroscopy. Protein Expression and Purification, 2014, 99, 78-86.                                                   | 1.3  | 1         |
| 142 | Protein Allostery at Atomic Resolution. Angewandte Chemie, 2020, 132, 22316-22323.                                                                                                            | 2.0  | 1         |
| 143 | PDBcor: An Automated Correlation Extraction Calculator for Multi-State Protein Structures. SSRN Electronic Journal, 0, , .                                                                    | 0.4  | 1         |
| 144 | S-Sulfhydration of the Catalytic Cysteine in the Rhodanese Domain of YgaP is Complex Dynamic<br>Process. Matters, 0, , .                                                                      | 1.0  | 1         |

| #   | Article                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Polychromatic frequency encoding in indirect dimensions in NMR spectroscopy. Molecular Physics, 2013, 111, 765-770. | 1.7 | 0         |
| 146 | On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard. Entropy, 2021, 23, 1188.      | 2.2 | 0         |
| 147 | Structure-Activity Relationship of Amyloids. Research and Perspectives in Alzheimer's Disease, 2013, , 33-46.       | 0.1 | 0         |
| 148 | Structures of the First Extracellular Domain of CRF Receptors. Current Molecular Pharmacology, 2017, 10, 318-324.   | 1.5 | 0         |
| 149 | Editorial. Chimia, 2012, 66, 730-731.                                                                               | 0.6 | 0         |