Jun-Yi Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426374/publications.pdf

Version: 2024-02-01

44 2,434 papers citations

21 45
h-index g-index

48 48 all docs docs citations

48 times ranked 3063 citing authors

#	Article	IF	CITATIONS
1	Detection, Identification, and Molecular Characterization of a 16SrII-V Subgroup Phytoplasma Associated with <i>Nicotiana plumbaginifolia</i> . Plant Disease, 2022, 106, 805-809.	1.4	4
2	Detection, Identification, and Molecular Characterization of the 16SrII-V Subgroup Phytoplasma Strain Associated with <i>Digera muricata</i> in Taiwan. Plant Disease, 2022, 106, 1788-1792.	1.4	2
3	Comparative Genome Analysis of †Candidatus Phytoplasma luffae' Reveals the Influential Roles of Potential Mobile Units in Phytoplasma Evolution. Frontiers in Microbiology, 2022, 13, 773608.	3 . 5	15
4	First Report of â€~ <i>Candidatus</i> Phytoplasma aurantifolia' Associated with the Invasive Weed <i>Eclipta prostrata</i> (L.) in Taiwan. Plant Disease, 2022, , .	1.4	1
5	<i>lxeris chinensis</i> Is a New Host for Peanut Witches' Broom Phytoplasma, a 16SrII-V Subgroup Strain, in Taiwan. Plant Disease, 2021, 105, 210.	1.4	6
6	Lilac Tasselflower (<i>Emilia sonchifolia</i>) Is a New Host for Peanut Witches' Broom Phytoplasma, a 16SrII-V Subgroup Strain in Taiwan. Plant Disease, 2021, 105, 211.	1.4	5
7	Threeflower Tickclover (<i>Desmodium triflorum</i>) Is a New Host for Peanut Witches' Broom Phytoplasma, a 16Srll-V Subgroup Strain, in Taiwan. Plant Disease, 2021, 105, 209.	1.4	3
8	Identification of 16SrII-V Phytoplasma Associated with Mungbean Phyllody Disease in Taiwan. Plant Disease, 2021, 105, 2290-2294.	1.4	11
9	Elucidation of the core betalain biosynthesis pathway in Amaranthus tricolor. Scientific Reports, 2021, 11, 6086.	3.3	14
10	First Report of 16SrII-V Phytoplasma Associated with Green Manure Soybean (<i>Glycine max</i>) in Taiwan. Plant Disease, 2021, 105, 2012.	1.4	6
11	First Report of 16SrII-V Peanut Witches' Broom Phytoplasma in Snake Gourd (<i>Trichosanthes) Tj ETQq1 1 (</i>	0.784314 1.4	rgฎT /Overloc
12	Accelerating Complete Phytoplasma Genome Assembly by Immunoprecipitation-Based Enrichment and MinION-Based DNA Sequencing for Comparative Analyses. Frontiers in Microbiology, 2021, 12, 766221.	3 . 5	15
13	Fringed Spiderflower (Cleome rutidosperma) Is a New Host for Purple Coneflower Witches' Broom Phytoplasma, a 16Srll-V Subgroup Strain in Taiwan. Plant Disease, 2020, 104, 1247-1247.	1.4	7
14	Crystal Structure-Based Exploration of Arginine-Containing Peptide Binding in the ADP-Ribosyltransferase Domain of the Type III Effector XopAl Protein. International Journal of Molecular Sciences, 2019, 20, 5085.	4.1	4
15	Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6451-6456.	7.1	54
16	Lamelloplasts and minichloroplasts in Begoniaceae: iridescence and photosynthetic functioning. Journal of Plant Research, 2018, 131, 655-670.	2.4	14
17	Potyviral Gene-Silencing Suppressor HCPro Interacts with Salicylic Acid (SA)-Binding Protein 3 to Weaken SA-Mediated Defense Responses. Molecular Plant-Microbe Interactions, 2018, 31, 86-100.	2.6	54
18	Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. Journal of Experimental Botany, 2018, 69, 5389-5401.	4.8	54

#	Article	IF	CITATIONS
19	<scp>HIGLE</scp> is a bifunctional homing endonuclease that directly interacts with <scp>HYL</scp> 1 and <scp>SERRATE</scp> in <i>Arabidopsis thaliana</i> . FEBS Letters, 2017, 591, 1383-1393.	2.8	5
20	Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in <i>Nicotiana benthamiana</i> by suppressing <i>NbOMT1</i> . Journal of Experimental Botany, 2016, 67, 4415-4425.	4.8	41
21	Draft Genome Sequence of a 16SrII-A Subgroup Phytoplasma Associated with Purple Coneflower () Tj ETQq1 1 0	0.784314 i 0.8	rgBT/Overlo
22	Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis. PLoS Pathogens, 2015, 11, e1005196.	4.7	61
23	Model for perianth formation in orchids. Nature Plants, 2015, 1, .	9.3	114
24	Arabidopsis HFR1 Is a Potential Nuclear Substrate Regulated by the Xanthomonas Type III Effector XopDXcc8004. PLoS ONE, 2015, 10, e0117067.	2.5	30
25	Phytoplasma effector SAP11 altered phosphate starvation responses and root architecture in <i>Arabidopsis</i> . Phytopathogenic Mollicutes, 2015, 5, S125.	0.1	0
26	Post-translational cleavage and self-interaction of the phytoplasma effector SAP11. Plant Signaling and Behavior, 2014, 9, e28991.	2.4	9
27	Transgenic Plants That Express the Phytoplasma Effector SAP11 Show Altered Phosphate Starvation and Defense Responses. Plant Physiology, 2014, 164, 1456-1469.	4.8	81
28	RING-type ubiquitin ligase McCPN1 catalyzes UBC8-dependent protein ubiquitination and interacts with Argonaute 4 in halophyte ice plant. Plant Physiology and Biochemistry, 2014, 80, 211-219.	5 . 8	6
29	Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes. Journal of Plant Biology, 2013, 56, 39-48.	2.1	8
30	A <scp>RING</scp> â€type <scp>E</scp> 3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene <i><scp>DEFECTIVE IN ANTHER DEHISCENCE</scp>1</i> in <scp>A</scp> rabidopsis. Plant Journal, 2013, 74, 310-327.	5.7	53
31	Purification and biochemical characterization of Arabidopsis At-NEET, an ancient iron-sulfur protein, reveals a conserved cleavage motif for subcellular localization. Plant Science, 2013, 213, 46-54.	3.6	18
32	The AvrB_AvrC Domain of AvrXccC of <i>Xanthomonas campestris</i> pv. <i>campestris</i> ls Required to Elicit Plant Defense Responses and Manipulate ABA Homeostasis. Molecular Plant-Microbe Interactions, 2013, 26, 419-430.	2.6	24
33	The Stable Association of Virion with the Triple-gene-block Protein 3-based Complex of Bamboo mosaic virus. PLoS Pathogens, 2013, 9, e1003405.	4.7	53
34	Effects of the virus satellite gene \hat{l}^2C1 on host plant defense signaling and volatile emission. Plant Signaling and Behavior, 2013, 8, e23317.	2.4	18
35	Histone Deacetylase HDA6 Is Functionally Associated with AS1 in Repression of KNOX Genes in Arabidopsis. PLoS Genetics, 2012, 8, e1003114.	3.5	93
36	Molecular insights into plant cell proliferation disturbance by <i>Agrobacterium</i> protein 6b. Genes and Development, 2011, 25, 64-76.	5.9	36

#	Article	IF	CITATIONS
37	Two Cap-Binding Proteins CBP20 and CBP80 are Involved in Processing Primary MicroRNAs. Plant and Cell Physiology, 2008, 49, 1634-1644.	3.1	164
38	\hat{l}^2 C1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes and Development, 2008, 22, 2564-2577.	5.9	244
39	Arabidopsis DCP2, DCP1, and VARICOSE Form a Decapping Complex Required for Postembryonic Development. Plant Cell, 2007, 18, 3386-3398.	6.6	246
40	Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling. Genes and Development, 2007, 21, 2100-2111.	5.9	50
41	HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes and Development, 2005, 19, 593-602.	5.9	256
42	Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. Current Opinion in Plant Biology, 2003, 6, 453-462.	7.1	52
43	LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423, 995-999.	27.8	446
44	OSTF1: A HD-GL2 Family Homeobox Gene is Developmentally Regulated During Early Embryogenesis in Rice. Plant and Cell Physiology, 2002, 43, 628-638.	3.1	28