Johanna A Joyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426194/publications.pdf

Version: 2024-02-01

		81900	182427
51	22,054	39	51
papers	citations	h-index	g-index
53	53	53	32482
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013, 19, 1423-1437.	30.7	5,730
2	Microenvironmental regulation of metastasis. Nature Reviews Cancer, 2009, 9, 239-252.	28.4	3,157
3	CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 2013, 19, 1264-1272.	30.7	1,812
4	T cell exclusion, immune privilege, and the tumor microenvironment. Science, 2015, 348, 74-80.	12.6	1,735
5	The Microenvironmental Landscape of Brain Tumors. Cancer Cell, 2017, 31, 326-341.	16.8	1,163
6	Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 2021, 11, 933-959.	9.4	646
7	Microenvironmental regulation of therapeutic response in cancer. Trends in Cell Biology, 2015, 25, 198-213.	7.9	604
8	Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell, 2020, 181, 1643-1660.e17.	28.9	554
9	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
10	Therapeutic targeting of the tumor microenvironment. Cancer Cell, 2005, 7, 513-520.	16.8	508
11	Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nature Reviews Cancer, 2015, 15, 712-729.	28.4	481
12	The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352, aad3018.	12.6	477
13	Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes and Development, 2006, 20, 543-556.	5.9	475
14	Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes and Development, 2011, 25, 2465-2479.	5.9	454
15	Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 2016, 17, 2445-2459.	6.4	450
16	Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015, 75, 3479-3491.	0.9	375
17	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	10.3	300
18	Metabolic origins of spatial organization in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2934-2939.	7.1	259

#	Article	lF	Citations
19	Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 andÂGM-CSF. Nature Cell Biology, 2017, 19, 974-987.	10.3	205
20	Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Science Translational Medicine, 2020, 12, .	12.4	170
21	Pericellular proteolysis in cancer. Genes and Development, 2014, 28, 2331-2347.	5.9	154
22	Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway. PLoS Pathogens, 2014, 10, e1003989.	4.7	148
23	STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation. Cell Reports, 2016, 16, 2914-2927.	6.4	125
24	Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy, 2019, 11, 677-689.	2.0	124
25	Genetic and Pharmacological Targeting of CSF-1/CSF-1R Inhibits Tumor-Associated Macrophages and Impairs BRAF-Induced Thyroid Cancer Progression. PLoS ONE, 2013, 8, e54302.	2.5	119
26	Central memory CD8+ TÂcells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity, 2020, 53, 985-1000.e11.	14.3	107
27	Live Imaging of Cysteine-Cathepsin Activity Reveals Dynamics of Focal Inflammation, Angiogenesis, and Polyp Growth. PLoS ONE, 2008, 3, e2916.	2.5	94
28	Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes and Development, 2014, 28, 2134-2150.	5.9	92
29	Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents. Cell Reports, 2017, 19, 101-113.	6.4	89
30	RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endolysosomal Pathway. Cancer Cell, 2014, 26, 61-76.	16.8	86
31	Proteomic Identification of Cysteine Cathepsin Substrates Shed from the Surface of Cancer Cells. Molecular and Cellular Proteomics, 2015, 14, 2213-2228.	3.8	82
32	Microglia promote glioblastoma via mTORâ€mediated immunosuppression of the tumour microenvironment. EMBO Journal, 2020, 39, e103790.	7.8	77
33	Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Research, 2017, 77, 6400-6414.	0.9	73
34	Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants. Journal of Biological Chemistry, 2013, 288, 7481-7491.	3.4	66
35	TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors. Cell Reports, 2016, 16, 1762-1773.	6.4	66
36	Obesity and the tumor microenvironment. Science, 2017, 358, 1130-1131.	12.6	60

#	Article	IF	Citations
37	Brain Metastasis Cell Lines Panel: A Public Resource of Organotropic Cell Lines. Cancer Research, 2020, 80, 4314-4323.	0.9	51
38	Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nature Communications, 2020, 11 , 229 .	12.8	51
39	Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes and Development, 2016, 30, 220-232.	5.9	50
40	Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nature Cancer, 2021, 2, 1086-1101.	13.2	39
41	Therapeutic targeting of tumor-associated macrophages and microglia in glioblastoma. Immunotherapy, 2014, 6, 663-666.	2.0	37
42	Legumain is activated in macrophages during pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 311, G548-G560.	3.4	35
43	Iron imaging reveals tumor and metastasis macrophage hemosiderin deposits in breast cancer. PLoS ONE, 2017, 12, e0184765.	2.5	34
44	Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Scientific Reports, 2019, 9, 857.	3. 3	23
45	Sensing Cytosolic RpsL by Macrophages Induces Lysosomal Cell Death and Termination of Bacterial Infection. PLoS Pathogens, 2015, 11, e1004704.	4.7	21
46	Evaluating Magnetic Resonance Spectroscopy as a Tool for Monitoring Therapeutic Response of Whole Brain Radiotherapy in a Mouse Model for Breast-to-Brain Metastasis. Frontiers in Oncology, 2019, 9, 1324.	2.8	13
47	Deficiency for the Cysteine Protease Cathepsin L Impairs Myc-Induced Tumorigenesis in a Mouse Model of Pancreatic Neuroendocrine Cancer. PLoS ONE, 2015, 10, e0120348.	2.5	13
48	Multimodal imaging of the dynamic brain tumor microenvironment during glioblastoma progression and in response to treatment. IScience, 2022, 25, 104570.	4.1	12
49	High-dose methotrexate-based chemotherapy as treatment for histiocytic sarcoma of the central nervous system. Leukemia and Lymphoma, 2016, 57, 1961-1964.	1.3	7
50	An integrated pipeline for comprehensive analysis of immune cells in human brain tumor clinical samples. Nature Protocols, 2021, 16, 4692-4721.	12.0	7
51	A Long-Distance Relay-tionship between Tumor and Bone. Immunity, 2018, 48, 13-16.	14.3	2