Agnieszka Dobrzyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426036/publications.pdf

Version: 2024-02-01

109321 110387 4,219 81 35 64 citations h-index g-index papers 91 91 91 5541 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elevated level of lysophosphatidic acid among patients with HNF1B mutations and its role in RCAD syndrome: a multiomic study. Metabolomics, 2022, 18, 15.	3.0	1
2	Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model. Biosensors, 2022, 12, 302.	4.7	3
3	A Novel Role for the DNA Repair Enzyme 8-Oxoguanine DNA Glycosylase in Adipogenesis. International Journal of Molecular Sciences, 2021, 22, 1152.	4.1	13
4	Bionic Organs: Shear Forces Reduce Pancreatic Islet and Mammalian Cell Viability during the Process of 3D Bioprinting. Micromachines, 2021, 12, 304.	2.9	19
5	Impact of Porcine Pancreas Decellularization Conditions on the Quality of Obtained dECM. International Journal of Molecular Sciences, 2021, 22, 7005.	4.1	11
6	Maternal Transmission of Human OGG1 Protects Mice Against Genetically- and Diet-Induced Obesity Through Increased Tissue Mitochondrial Content. Frontiers in Cell and Developmental Biology, 2021, 9, 718962.	3.7	5
7	SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. Journal of Cellular Physiology, 2020, 235, 1129-1140.	4.1	32
8	Combinations of regenerative medicine and Lab-on-a-chip systems: New hope to restoring the proper function of pancreatic islets in diabetes. Biosensors and Bioelectronics, 2020, 167, 112451.	10.1	11
9	Stearoyl-CoA Desaturase 1 Activity Determines the Maintenance of DNMT1-Mediated DNA Methylation Patterns in Pancreatic β-Cells. International Journal of Molecular Sciences, 2020, 21, 6844.	4.1	8
	Taccerts in Functional Federal Meteorial of Molecular Sciences, 2020, 22, 00 Fin		
10	Sphingolipid mediators of cell signaling and metabolism. , 2020, , 385-411.		1
10		0.5	0
	Sphingolipid mediators of cell signaling and metabolism. , 2020, , 385-411. "Islets therapeutic checkpoint: Inhibition of stearoylâ€CoA desaturase impairs lipid droplet morphology	0.5 0.5	
11	Sphingolipid mediators of cell signaling and metabolism. , 2020, , 385-411. "lslets therapeutic checkpoint: Inhibition of stearoyl oA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic î²â€œellsâ€. FASEB Journal, 2020, 34, 1-1. Stearoyl oA desaturase 1 determines pancreatic î²â€œell fate through regulation of DNA methylation		0
11 12	Sphingolipid mediators of cell signaling and metabolism. , 2020, , 385-411. "lslets therapeutic checkpoint: Inhibition of stearoylâ€CoA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic î²â€œllsâ€. FASEB Journal, 2020, 34, 1-1. Stearoylâ€CoA desaturase 1 determines pancreatic î²â€œll fate through regulation of DNA methylation pattern. FASEB Journal, 2020, 34, 1-1. Lab-on-a-Chip System for Developing and Fluorescence Imaging a Three-Dimensional Model of	0.5	0
11 12 13	Sphingolipid mediators of cell signaling and metabolism., 2020, , 385-411. "Islets therapeutic checkpoint: Inhibition of stearoylâ€CoA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic î²â€cells†FASEB Journal, 2020, 34, 1-1. Stearoylâ€CoA desaturase 1 determines pancreatic î²â€cell fate through regulation of DNA methylation pattern. FASEB Journal, 2020, 34, 1-1. Lab-on-a-Chip System for Developing and Fluorescence Imaging a Three-Dimensional Model of Pancreatic Islets Under Flow Conditions. ECS Meeting Abstracts, 2020, MA2020-01, 1984-1984. Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and î²-catenin binding in pancreatic î²-cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019,	0.5	0 0
11 12 13	Sphingolipid mediators of cell signaling and metabolism., 2020, , 385-411. "lslets therapeutic checkpoint: Inhibition of stearoylâ€CoA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic β"lls†FASEB Journal, 2020, 34, 1-1. Stearoylâ€CoA desaturase 1 determines pancreatic β"ll fate through regulation of DNA methylation pattern. FASEB Journal, 2020, 34, 1-1. Lab-on-a-Chip System for Developing and Fluorescence Imaging a Three-Dimensional Model of Pancreatic Islets Under Flow Conditions. ECS Meeting Abstracts, 2020, MA2020-01, 1984-1984. Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and β-catenin binding in pancreatic β-cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2753-2764. Fat and Sugarâ€"A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models	0.5	0 0 9
11 12 13 14	Sphingolipid mediators of cell signaling and metabolism. , 2020, , 385-411. "Islets therapeutic checkpoint: Inhibition of stearoyl oA desaturase impairs lipid droplet morphology and metabolism during palmitotoxicity of pancreatic l²â€œIls†FASEB Journal, 2020, 34, 1-1. Stearoyl oA desaturase 1 determines pancreatic l²â€œIl fate through regulation of DNA methylation pattern. FASEB Journal, 2020, 34, 1-1. Lab-on-a-Chip System for Developing and Fluorescence Imaging a Three-Dimensional Model of Pancreatic Islets Under Flow Conditions. ECS Meeting Abstracts, 2020, MA2020-01, 1984-1984. Oleic acid increases the transcriptional activity of FoxO1 by promoting its nuclear translocation and l²-catenin binding in pancreatic l²-cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2753-2764. Fat and Sugarâ€"A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients, 2019, 11, 2871. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell	0.5 0.0 3.8 4.1	0 0 0 9

#	Article	IF	CITATIONS
19	High-Throughput Approaches onto Uncover (Epi)Genomic Architecture of Type 2 Diabetes. Genes, 2018, 9, 374.	2.4	22
20	Na dobre i na zÅ,e – czyli rola oddziaÅ,ywania trzustki, Å›ródbÅ,onka i tkanki tÅ,uszczowej w regulacji funkcjonowania komórek ÃŽË› i rozwoju cukrzycy typu 2 zwiÄ…zanej z otyÅ,oÅ›ciÄ Postepy Biochemii, 2018, 166-174.	6 4 ,2	3
21	Epigenetyczna regulacja ekspresji genów – nowy mechanizm Å,ÄczÄcy otyÅ,ość z rozwojem cukrzy Postepy Biochemii, 2018, 64, 157-165.	cy typu 2.	1
22	Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. International Journal of Molecular Sciences, 2017, 18, 1576.	4.1	164
23	8-oxoguanine DNA glycosylase (OGG1) deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle. PLoS ONE, 2017, 12, e0181687.	2.5	28
24	Omegaâ€3 Fatty Acids Do Not Protect Against Arrhythmias in Acute Nonreperfused Myocardial Infarction Despite Some Antiarrhythmic Effects. Journal of Cellular Biochemistry, 2016, 117, 2570-2582.	2.6	7
25	Adipose- and muscle-derived Wnts trigger pancreatic \hat{l}^2 -cell adaptation to systemic insulin resistance. Scientific Reports, 2016, 6, 31553.	3.3	37
26	Differential regulation of serum microRNA expression by HNF1 \hat{l}^2 and HNF1 \hat{l}^\pm transcription factors. Diabetologia, 2016, 59, 1463-1473.	6.3	18
27	Islet β-cell failure in type 2 diabetes – Within the network of toxic lipids. Biochemical and Biophysical Research Communications, 2015, 460, 491-496.	2.1	79
28	Inhibition of SCD1 impairs palmitate-derived autophagy at the step of autophagosome-lysosome fusion in pancreatic \hat{l}^2 -cells. Journal of Lipid Research, 2015, 56, 1901-1911.	4.2	54
29	Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6185-94.	7.1	44
30	Metabolic reprogramming of the heart through stearoyl-CoA desaturase. Progress in Lipid Research, 2015, 57, 1-12.	11.6	42
31	Stearoyl-CoA desaturase regulates inflammatory gene expression by changing DNA methylation level in 3T3 adipocytes. International Journal of Biochemistry and Cell Biology, 2014, 55, 40-50.	2.8	34
32	CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release. Journal of Biological Chemistry, 2013, 288, 32685-32699.	3.4	61
33	Knockdown of pyruvate carboxylase or fatty acid synthase lowers numerous lipids and glucose-stimulated insulin release in insulinoma cells. Archives of Biochemistry and Biophysics, 2013, 532, 23-31.	3.0	6
34	Expression of lipogenic genes is upregulated in the heart with exercise training-induced but not pressure overload-induced left ventricular hypertrophy. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1348-E1358.	3.5	47
35	Statin Therapy and New-onset Diabetes: Molecular Mechanisms and Clinical Relevance. Current Pharmaceutical Design, 2013, 19, 4904-4912.	1.9	62
36	Stearoyl-CoA Desaturase in the Control of Heart Metabolism. , 2013, , 85-101.		0

#	Article	IF	CITATIONS
37	Stearoylâ€CoA desaturase affects the level of global DNA methylation in 3T3â€L1 adipocytes. FASEB Journal, 2013, 27, 813.14.	0.5	0
38	Effect of dietary restriction on metabolic, anatomic and molecular traits in mice depends on the initial level of basal metabolic rate (BMR). Journal of Experimental Biology, 2012, 215, 3191-9.	1.7	15
39	Impaired dynamics of the late endosome/lysosome compartment in human Niemann–Pick type C skin fibroblasts carrying mutation in NPC1 gene. Molecular BioSystems, 2012, 8, 1197.	2.9	20
40	Increased availability of endogenous and dietary oleic acid contributes to the upregulation of cardiac fatty acid oxidation. Mitochondrion, 2012, 12, 132-137.	3.4	16
41	Monounsaturated fatty acids are required for membrane translocation of protein kinase C-thetainduced by lipid overload in skeletal muscle. Molecular Membrane Biology, 2012, 29, 309-320.	2.0	12
42	Stearoyl-CoA desaturase and insulin signaling â€" What is the molecular switch?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1189-1194.	1.0	68
43	Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice. Journal of Lipid Research, 2010, 51, 2202-2210.	4.2	51
44	Endurance training-induced accumulation of muscle triglycerides is coupled to upregulation of stearoyl-CoA desaturase 1. Journal of Applied Physiology, 2010, 109, 1653-1661.	2.5	37
45	Novel substituted heteroaromatic compounds as inhibitors of stearoyl-CoA desaturase. Expert Opinion on Therapeutic Patents, 2010, 20, 849-853.	5.0	10
46	Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochemical and Biophysical Research Communications, 2009, 380, 818-822.	2.1	98
47	Neutral Storage Lipids of Histoplasma capsulatum: Effect of Culture Age. Current Microbiology, 2008, 56, 110-114.	2.2	7
48	Ferrous, But Not Ferric, Iron Maintains Homeostasis in Histoplasma capsulatum Triacylglycerides. Current Microbiology, 2008, 57, 153-157.	2.2	7
49	Stearoylâ€CoA desaturase: A novel control point of lipid metabolism and insulin sensitivity. European Journal of Lipid Science and Technology, 2008, 110, 93-100.	1.5	22
50	The role of rapid lipogenesis in insulin secretion: Insulin secretagogues acutely alter lipid composition of INS-1 832/13 cells. Archives of Biochemistry and Biophysics, 2008, 470, 153-162.	3.0	40
51	Inhibition of stearoyl-CoA desaturase by cyclic amine derivatives. Expert Opinion on Therapeutic Patents, 2008, 18, 457-460.	5.0	3
52	Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E357-E364.	3.5	61
53	SCD1 deficiency decreases hepatic lipogenesis and improves insulin sensitivity in obese mice in the presence of leptin. FASEB Journal, 2008, 22, 643.5.	0.5	0
54	Stearoyl-CoA Desaturase-1 Mediates the Pro-lipogenic Effects of Dietary Saturated Fat. Journal of Biological Chemistry, 2007, 282, 2483-2493.	3.4	191

#	Article	IF	CITATIONS
55	Typing of Histoplasma capsulatum strains by fatty acid profile analysis. Journal of Medical Microbiology, 2007, 56, 788-797.	1.8	16
56	Stearoyl CoA desaturaseâ€1 mediates the proâ€lipogenic effects of dietary saturated fat. FASEB Journal, 2007, 21, A109.	0.5	1
57	Stearoyl-CoA desaturase: a new therapeutic target of liver steatosis. Drug Development Research, 2006, 67, 643-650.	2.9	17
58	Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obesity Reviews, 2005, 6, 169-174.	6.5	148
59	Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E381-E387.	3.5	72
60	Ceramides, Sphinganine, Sphingosine and Acid Sphingomyelinases in the Human Umbilical Cord Blood. Hormone and Metabolic Research, 2005, 37, 433-437.	1.5	7
61	Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing 1²-oxidation in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E599-E607.	3.5	134
62	Stearoyl-CoA desaturase-2 gene expression is required for lipid synthesis during early skin and liver development. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12501-12506.	7.1	125
63	Stearoyl-CoA Desaturase 1 Deficiency Increases CTP:Choline Cytidylyltransferase Translocation into the Membrane and Enhances Phosphatidylcholine Synthesis in Liver. Journal of Biological Chemistry, 2005, 280, 23356-23362.	3.4	48
64	Polyunsaturated fatty acids do not activate AMP-activated protein kinase in mouse tissues. Biochemical and Biophysical Research Communications, 2005, 332, 892-896.	2.1	27
65	The role of stearoyl-CoA desaturase in the control of metabolism. Prostaglandins Leukotrienes and Essential Fatty Acids, 2005, 73, 35-41.	2.2	135
66	Stearoyl-CoA desaturase: A therapeutic target of insulin resistance and diabetes. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 125-128.	0.5	4
67	Lack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment. Journal of Lipid Research, 2004, 45, 1674-1682.	4.2	110
68	Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6409-6414.	7.1	356
69	Reduced Adiposity and Liver Steatosis by Stearoyl-CoA Desaturase Deficiency Are Independent of Peroxisome Proliferator-activated Receptor-α. Journal of Biological Chemistry, 2004, 279, 35017-35024.	3.4	108
70	Stearoyl-CoA Desaturase 1 Gene Expression Is Necessary for Fructose-mediated Induction of Lipogenic Gene Expression by Sterol Regulatory Element-binding Protein-1c-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2004, 279, 25164-25171.	3.4	255
71	Effect of acute exercise and training on metabolism of ceramide in the heart muscle of the rat. Acta Physiologica Scandinavica, 2004, 181, 313-319.	2.2	20
72	Exercise and training effects on ceramide metabolism in human skeletal muscle. Experimental Physiology, 2004, 89, 119-127.	2.0	70

#	Article	IF	CITATION
73	The Role of Stearoyl-CoA Desaturase in Body Weight Regulation. Trends in Cardiovascular Medicine, 2004, 14, 77-81.	4.9	105
74	Regulation of stearoyl-CoA desaturase expression. Lipids, 2004, 39, 1061-1065.	1.7	114
75	Two î"9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal Genetics and Biology, 2004, 41, 501-509.	2.1	29
76	Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Archives of Biochemistry and Biophysics, 2003, 420, 185-193.	3.0	67
77	Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11110-11115.	7.1	168
78	Effect of Acute Exercise on the Content of Free Sphinganine and Sphingosine in Different Skeletal Muscle Types of the Rat. Hormone and Metabolic Research, 2002, 34, 523-529.	1.5	29
79	Concentration and Composition of Free Ceramides in Human Plasma. Hormone and Metabolic Research, 2002, 34, 466-468.	1.5	13
80	Ceramides and sphingomyelins in skeletal muscles of the rat: content and composition. Effect of prolonged exercise. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E277-E285.	3.5	88
81	The Sphingomyelin‧ignaling Pathway in Skeletal Muscles and Its Role in Regulation of Glucose Uptake. Annals of the New York Academy of Sciences, 2002, 967, 236-248.	3.8	26