Paul B Hibbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542530/publications.pdf

Version: 2024-02-01

92 papers 1,486 citations

304743 22 h-index 33 g-index

97 all docs

97
docs citations

97 times ranked 1159 citing authors

#	Article	IF	CITATIONS
1	Saccadic eye movements are deployed faster for salient facial stimuli, but are relatively indifferent to their emotional content. Vision Research, 2022, 198, 108054.	1.4	3
2	Contributions of pictorial and binocular cues to the perception of distance in virtual reality. Virtual Reality, 2021, 25, 1087-1103.	6.1	11
3	Migraine Visual Aura and Cortical Spreading Depression—Linking Mathematical Models to Empirical Evidence. Vision (Switzerland), 2021, 5, 30.	1.2	9
4	No Evidence of Reduced Contrast Sensitivity in Migraine-with-Aura for Large, Narrowband, Centrally Presented Noise-Masked Stimuli. Vision (Switzerland), 2021, 5, 32.	1.2	1
5	Binocular vision supports the development of scene segmentation capabilities: Evidence from a deep learning model. Journal of Vision, 2021, 21, 13.	0.3	4
6	Stereoscopic depth adaptation from binocularly correlated versus anti-correlated noise: Test of an efficient coding theory of stereopsis. Vision Research, 2020, 166, 60-71.	1.4	9
7	No effect of feedback, level of processing or stimulus presentation protocol on perceptual learning when easy and difficult trials are interleaved. Vision Research, 2020, 176, 100-117.	1.4	2
8	Suppression durations for facial expressions under breaking continuous flash suppression: effects of faces' low-level image properties. Scientific Reports, 2020, 10, 17427.	3.3	5
9	Size and shape constancy in consumer virtual reality. Behavior Research Methods, 2020, 52, 1587-1598.	4.0	12
10	Contrast normalisation masks natural expression-related differences and artificially enhances the perceived salience of fear expressions. PLoS ONE, 2020, 15, e0234513.	2.5	7
11	Impairment of cyclopean surface processing by disparity-defined masking stimuli. Journal of Vision, 2020, 20, 1.	0.3	8
12	Title is missing!. , 2020, 15, e0234513.		0
13	Title is missing!. , 2020, 15, e0234513.		O
14	Title is missing!. , 2020, 15, e0234513.		0
15	Title is missing!. , 2020, 15, e0234513.		O
16	The effect of facial expression on contrast sensitivity: A behavioural investigation and extension of Hedger, Adams & Carner (2015). PLoS ONE, 2019, 14, e0205621.	2.5	7
17	Spatial Frequency Tuning and Transfer of Perceptual Learning for Motion Coherence Reflects the Tuning Properties of Global Motion Processing. Vision (Switzerland), 2019, 3, 44.	1.2	1
18	Vision and Hyper-Responsiveness in Migraine. Vision (Switzerland), 2019, 3, 62.	1.2	12

#	Article	IF	CITATIONS
19	Natural variation in female reproductive hormones does not affect contrast sensitivity. Royal Society Open Science, 2018, 5, 171566.	2.4	3
20	The effect of image position on the Independent Components of natural binocular images. Scientific Reports, 2018, 8, 449.	3.3	2
21	Surface continuity and discontinuity bias the perception of stereoscopic depth. Journal of Vision, 2018, 18, 13.	0.3	6
22	First- and second-order contributions to depth perception in anti-correlated random dot stereograms. Scientific Reports, 2018, 8, 14120.	3.3	7
23	Strengthening functionally specific neural pathways with transcranial brain stimulation. Current Biology, 2018, 28, R735-R736.	3.9	63
24	Typical Lateral Interactions, but Increased Contrast Sensitivity, in Migraine-With-Aura. Vision (Switzerland), 2018, 2, 7.	1.2	12
25	Shape and Size Constancy in Consumer Virtual Reality. Journal of Vision, 2018, 18, 515.	0.3	1
26	The effect of edge separation and orientation on the perception of depth in anti-correlated random dot stereograms. Journal of Vision, 2018, 18, 988.	0.3	0
27	Summation of visual attributes in auditory–visual crossmodal correspondences. Psychonomic Bulletin and Review, 2017, 24, 1104-1112.	2.8	15
28	Perceived duration of brief visual events is mediated by timing mechanisms at the global stages of visual processing. Royal Society Open Science, 2017, 4, 160928.	2.4	4
29	Magnitude, precision, and realism of depth perception in stereoscopic vision. Cognitive Research: Principles and Implications, 2017, 2, 25.	2.0	23
30	Introduction to the Special Issue on Individual Differences in Multisensory Perception: an Overview. Multisensory Research, 2017, 30, 461-466.	1.1	4
31	Manipulations of local, but not global, luminance gradients affect judgements of depth magnitude. Journal of Vision, 2017, 17, 1045.	0.3	1
32	Distance Perception in Consumer Virtual Reality. Journal of Vision, 2017, 17, 1047.	0.3	2
33	A Bayesian model of distance perception from ocular convergence. Journal of Vision, 2017, 17, 159.	0.3	4
34	Efficient encoding of binocular disparity predicts sensitivity to depth differences. Journal of Vision, 2017, 17, 1068.	0.3	0
35	Adapting to time: Duration channels do not mediate human time perception. Journal of Vision, 2016, 16, 4.	0.3	10
36	Ideal Binocular Disparity Detectors Learned Using Independent Subspace Analysis on Binocular Natural Image Pairs. PLoS ONE, 2016, 11, e0150117.	2.5	6

#	Article	IF	CITATIONS
37	Binocular Depth Judgments on Smoothly Curved Surfaces. PLoS ONE, 2016, 11, e0165932.	2.5	2
38	Encoding and estimation of first- and second-order binocular disparity in natural images. Vision Research, 2016, 120, 108-120.	1.4	14
39	Empowering Reentrant Projections from V5 to V1 Boosts Sensitivity to Motion. Current Biology, 2016, 26, 2155-2160.	3.9	63
40	Visual processing in migraine. Cephalalgia, 2016, 36, 1057-1076.	3.9	39
41	Evaluation of the accuracy of the Leap Motion controller for measurements of grip aperture. , 2015, , .		3
42	Uncomfortable images produce non-sparse responses in a model of primary visual cortex. Royal Society Open Science, 2015, 2, 140535.	2.4	38
43	Distribution of independent components of binocular natural images. Journal of Vision, 2015, 15, 6.	0.3	16
44	Quality, quantity and precision of depth perception in stereoscopic displays. , 2015, , .		1
45	Ordinal judgments of depth in monocularly- and stereoscopically-viewed photographs of complex natural scenes. , 2015, , .		4
46	Migraine in Synesthetes and Nonsynesthetes: A Prevalence Study. Perception, 2015, 44, 1179-1202.	1.2	11
47	Depth of Field Affects Perceived Depth in Stereographs. ACM Transactions on Applied Perception, 2015, 11, 1-18.	1.9	13
48	Mechanisms for similarity matching in disparity measurement. Frontiers in Psychology, 2014, 4, 1014.	2.1	13
49	Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms. PLoS ONE, 2014, 9, e84087.	2.5	19
50	Reverse correlation reveals how observers sample visual information when estimating three-dimensional shape. Vision Research, 2013, 86, 115-127.	1.4	11
51	Visual Search and Visual Discomfort. Perception, 2013, 42, 1-15.	1.2	5
52	Visual Discomfort and Depth-of-Field. I-Perception, 2013, 4, 156-169.	1.4	24
53	Visual discomfort and blur. Journal of Vision, 2013, 13, 7-7.	0.3	25
54	Seeing in 3-D With Just One Eye. Psychological Science, 2013, 24, 1673-1685.	3.3	68

#	Article	IF	Citations
55	Misperception of aspect ratio in binocularly viewed surfaces. Vision Research, 2012, 70, 34-43.	1.4	5
56	Perception of Relative Depth Interval: Systematic Biases in Perceived Depth. Quarterly Journal of Experimental Psychology, 2012, 65, 73-91.	1.1	10
57	Saccadic latency is modulated by emotional content of spatially filtered face stimuli Emotion, 2012, 12, 1384-1392.	1.8	23
58	Perceived Direction of Motion Determined by Adaptation to Static Binocular Images. Current Biology, 2012, 22, 28-32.	3.9	63
59	Statistically optimal integration of biased sensory estimates. Journal of Vision, 2011, 11, 12-12.	0.3	35
60	Depth-cue integration in grasp programming: No evidence for a binocular specialism. Neuropsychologia, 2011, 49, 1246-1257.	1.6	29
61	Spatial frequency and visual discomfort. Vision Research, 2011, 51, 1767-1777.	1.4	80
62	Evidence for relative disparity matching in the perception of an ambiguous stereogram. Journal of Vision, 2010, 10, 35-35.	0.3	7
63	Consciousness of the first order in blindsight. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21217-21222.	7.1	45
64	Binocular energy responses to natural images. Vision Research, 2008, 48, 1427-1439.	1.4	47
65	Can appearance be so deceptive? Representationalism and binocular vision. Spatial Vision, 2008, 21, 549-559.	1.4	23
66	A statistical model of binocular disparity. Visual Cognition, 2007, 15, 149-165.	1.6	28
67	The visual processing of motion-defined transparency. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1049-1057.	2.6	12
68	Vertical Disparity Affects Shape and Size Judgments across Surfaces Separated in Depth. Perception, 2007, 36, 696-702.	1.2	5
69	2-D Tilt and 3-D Slant Illusions in Perception and Action Tasks. Perception, 2006, 35, 1297-1305.	1.2	1
70	Disparity-defined objects moving in depth do not elicit three-dimensional shape constancy. Vision Research, 2006, 46, 1599-1610.	1.4	24
71	Surface orientation, modulation frequency and the detection and perception of depth defined by binocular disparity and motion parallax. Vision Research, 2006, 46, 2636-2644.	1.4	23
72	Stereoscopic correspondence for ambiguous targets is affected by elevation and fixation distance. Spatial Vision, 2005, 18, 399-411.	1.4	18

#	Article	IF	Citations
73	The orientation bandwidth of cyclopean channels. Vision Research, 2005, 45, 2780-2785.	1.4	7
74	Binocular cues and the control of prehension. Spatial Vision, 2004, 17, 95-110.	1.4	57
75	Reaching for virtual objects: binocular disparity and the control of prehension. Experimental Brain Research, 2003, 148, 196-201.	1.5	47
76	Attention Affects the Stereoscopic Depth Aftereffect. Perception, 2003, 32, 635-640.	1.2	9
77	Reaching for virtual objects: binocular disparity, retinal motion and the control of prehension. Arquivos Brasileiros De Oftalmologia, 2003, 66, 53-61.	0.5	2
78	Isotropic integration of binocular disparity and relative motion in the perception of three-dimensional shape. Spatial Vision, 2002, 15, 205-217.	1.4	5
79	The stereoscopic anisotropy affects manual pointing. Spatial Vision, 2002, 15, 443-458.	1.4	4
80	The stereoscopic anisotropy: Individual differences and underlying mechanisms Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 469-476.	0.9	14
81	Perceptual latencies to discriminate surface orientation in stereopsis. Perception & Psychophysics, 2002, 64, 32-40.	2.3	12
82	The stereoscopic ansiotropy: Individual differences and underlying mechanisms Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 469-476.	0.9	16
83	<title>Can observers exploit enhanced motion parallax to control reaching movements within telepresence environments?</title> ., 2001, , .		2
84	<code><title>Can telepresent observers learn to take account of enhanced binocular disparities?</title>., 2001,,.</code>		0
85	Cue combination in the motion correspondence problem. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1369-1374.	2.6	12
86	Global motion processing is not tuned for binocular disparity. Vision Research, 1999, 39, 961-974.	1.4	15
87	Stereopsis from contrast envelopes. Vision Research, 1999, 39, 2313-2324.	1.4	29
88	Does Binocular Disparity Facilitate the Detection of Transparent Motion?. Perception, 1999, 28, 183-191.	1.2	30
89	Visual Processing and Dyslexia. Perception, 1999, 28, 243-254.	1.2	65
90	Plaid slant and inclination thresholds can be predicted from components. Vision Research, 1998, 38, 1073-1084.	1.4	12

#	Article	IF	CITATIONS
91	Linear and nonlinear transparencies in binocular vision. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1837-1845.	2.6	14
92	Linear filtering precedes nonlinear processing in early vision. Current Biology, 1996, 6, 891-896.	3.9	31