Dongqing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542419/publications.pdf

Version: 2024-02-01

57758 64796 7,247 163 44 79 citations h-index g-index papers 166 166 166 5483 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Smartphone based microfluidic lab-on-chip device for real-time detection, counting and sizing of living algae. Measurement: Journal of the International Measurement Confederation, 2022, 187, 110304.	5.0	22
2	Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics. Journal of Colloid and Interface Science, 2022, 612, 23-34.	9.4	14
3	Electrokinetic transportation and differentiation of copper and aluminum particles in oil with an oil-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128397.	4.7	4
4	Conductivity-difference-enhanced DC dielectrophoretic particle separation in a microfluidic chip. Analyst, The, 2022, 147, 1106-1116.	3.5	8
5	Living algae detection with a PDMS-liquid chlorophyll fluorescence microfluidic chip filter and a smartphone. Analyst, The, 2022, 147, 3723-3731.	3.5	1
6	Single Artificial Ion Channels with Tunable Ion Transport Based on the Surface Modification of pH-Responsive Polymers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27130-27139.	8.0	7
7	Electrically controllable cargo delivery with dextran-rich droplets. Journal of Colloid and Interface Science, 2021, 582, 102-111.	9.4	3
8	Simultaneous and continuous particle separation and counting <i>via</i> localized DC-dielectrophoresis in a microfluidic chip. RSC Advances, 2021, 11, 3827-3833.	3.6	6
9	Ionic Diode Based on an Asymmetricâ€Shaped Carbon Black Nanoparticle Membrane. Advanced Functional Materials, 2021, 31, 2104341.	14.9	15
10	A method to improve the resistive pulse sensing by modifying surface charge of nanochannels. Sensors and Actuators B: Chemical, 2021, 337, 129773.	7.8	4
11	A surface charge governed nanofluidic diode based on a single polydimethylsiloxane (PDMS) nanochannel. Journal of Colloid and Interface Science, 2021, 596, 54-63.	9.4	15
12	Integrated Iontronic Circuits Based on Single Nanochannels. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 48208-48218.	8.0	10
13	Electrokinetic detection and separation of living algae in a microfluidic chip: implication for ship's ballast water analysis. Environmental Science and Pollution Research, 2021, 28, 22853-22863.	5.3	8
14	Zeta potentials of PDMS surfaces modified with poly(ethylene glycol) by physisorption. Electrophoresis, 2020, 41, 761-768.	2.4	13
15	Bidirectional transfer of particles across liquid-liquid interface under electric pulse. Journal of Colloid and Interface Science, 2020, 560, 436-446.	9.4	7
16	Polyelectrolyte adsorption in single small nanochannel by layer-by-layer method. Journal of Colloid and Interface Science, 2020, 561, 1-10.	9.4	9
17	Detecting zeta potential of polydimethylsiloxane (PDMS) in electrolyte solutions with atomic force microscope. Journal of Colloid and Interface Science, 2020, 578, 116-123.	9.4	13
18	Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor. Analyst, The, 2020, 145, 5466-5474.	3.5	9

#	Article	IF	Citations
19	Vortex generation in electroosmotic flow in a straight polydimethylsiloxane microchannel with different polybrene modified-to-unmodified section length ratios. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	11
20	Electroosmotic flow velocity in DNA modified nanochannels. Journal of Colloid and Interface Science, 2019, 553, 31-39.	9.4	12
21	Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis. Analytical Chemistry, 2019, 91, 6304-6314.	6.5	62
22	Coalescence of a Water Drop with an Air–Liquid Interface: Electric Current Generation and Critical Micelle Concentration (CMC) Sensing Application. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16981-16990.	8.0	6
23	Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Analytica Chimica Acta, 2019, 1059, 68-79.	5.4	34
24	Thin liquid film between a floating oil droplet and a glass slide under DC electric field. Journal of Colloid and Interface Science, 2019, 534, 262-269.	9.4	5
25	Electrokinetic motion of a micro oil droplet under a glass slide. Electrophoresis, 2019, 40, 1034-1040.	2.4	3
26	Translational velocity of a charged oil droplet close to a horizontal solid surface under an applied electric field. International Journal of Heat and Mass Transfer, 2019, 132, 322-330.	4.8	8
27	A novel microfluidic resistive pulse sensor with multiple voltage input channels and a side sensing gate for particle and cell detection. Analytica Chimica Acta, 2019, 1052, 113-123.	5.4	28
28	Nonlinear electrokinetic motion of electrically induced Janus droplets in microchannels. Journal of Colloid and Interface Science, 2019, 538, 277-285.	9.4	4
29	Detection of Individual Molecules and Ions by Carbon Nanotubeâ€Based Differential Resistive Pulse Sensor. Small, 2018, 14, e1800013.	10.0	29
30	Electrokinetic Motion of an Oil Droplet Attached to a Water–Air Interface from Below. Journal of Physical Chemistry B, 2018, 122, 1738-1746.	2.6	8
31	Janus Droplets and Droplets with Multiple Heterogeneous Surface Strips Generated with Nanoparticles under Applied Electric Field. Journal of Physical Chemistry C, 2018, 122, 8461-8472.	3.1	11
32	Detection of viability of micro-algae cells by optofluidic hologram pattern. Biomicrofluidics, 2018, 12, 024111.	2.4	8
33	Microvalve using electrokinetic motion of electrically induced Janus droplet. Analytica Chimica Acta, 2018, 1021, 85-94.	5.4	16
34	Particle detection on microfluidic chips by differential resistive pulse sensing (RPS) method. Talanta, 2018, 184, 418-428.	5.5	12
35	Manipulation and separation of oil droplets by using asymmetric nano-orifice induced DC dielectrophoretic method. Journal of Colloid and Interface Science, 2018, 512, 389-397.	9.4	21
36	Electrokinetic motion of a spherical micro particle at an oilâ° water interface in microchannel. Electrophoresis, 2018, 39, 807-815.	2.4	14

#	Article	lF	Citations
37	Electrokinetic motion of a spherical polystyrene particle at a liquid-fluid interface. Journal of Colloid and Interface Science, 2018, 509, 432-439.	9.4	16
38	Tunable Droplet Manipulation and Characterization by ac-DEP. ACS Applied Materials & Emp; Interfaces, 2018, 10, 36572-36581.	8.0	36
39	Direct current dielectrophoretic manipulation of the ionic liquid droplets in water. Journal of Chromatography A, 2018, 1558, 96-106.	3.7	12
40	Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution. Journal of Colloid and Interface Science, 2018, 532, 657-665.	9.4	12
41	Electrokinetic motion of a submerged oil droplet near an air–water interface. Chemical Engineering Science, 2018, 192, 264-272.	3.8	13
42	Electrokinetic motion of single nanoparticles in single PDMS nanochannels. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	10
43	Electrokinetic motion of an electrically induced Janus droplet in microchannels. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	12
44	Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis. Journal of Chromatography A, 2017, 1501, 151-160.	3.7	24
45	Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow. Sensors and Actuators B: Chemical, 2017, 250, 274-284.	7.8	46
46	Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing. Nanoscale, 2017, 9, 5964-5974.	5.6	21
47	Improving particle detection sensitivity of a microfluidic resistive pulse sensor by a novel electrokinetic flow focusing method. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	13
48	Surface-conduction enhanced dielectrophoretic-like particle migration in electric-field driven fluid flow through a straight rectangular microchannel. Physics of Fluids, 2017, 29, .	4.0	15
49	Numerical studies of manipulation and separation of Janus particles in nano-orifice based DC-dielectrophoretic microfluidic chips. Journal of Micromechanics and Microengineering, 2017, 27, 095007.	2.6	10
50	Fabrication and electrokinetic motion of electrically anisotropic Janus droplets in microchannels. Electrophoresis, 2017, 38, 287-295.	2.4	15
51	Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses. Canadian Journal of Microbiology, 2017, 63, 119-128.	1.7	3
52	Chargeâ€based separation of particles and cells with similar sizes via the wallâ€induced electrical lift. Electrophoresis, 2017, 38, 320-326.	2.4	10
53	Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. Micromachines, 2017, 8, 204.	2.9	52
54	Zeta potentials of polydimethylsiloxane surfaces modified by polybrene of different concentrations. Electrophoresis, 2016, 37, 567-572.	2.4	11

#	Article	IF	Citations
55	A novel microfluidic valve controlledby induced charge electro-osmotic flow. Journal of Micromechanics and Microengineering, 2016, 26, 075002.	2.6	16
56	A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution. Scientific Reports, 2016, 6, 23165.	3.3	10
57	Sheathless electrokinetic particle separation in a bifurcating microchannel. Biomicrofluidics, 2016, 10, 054104.	2.4	15
58	Redistribution of charged aluminum nanoparticles on oil droplets in water in response to applied electrical field. Journal of Nanoparticle Research, $2016, 18, 1$.	1.9	16
59	Electroosmotic flow in single PDMS nanochannels. Nanoscale, 2016, 8, 12237-12246.	5.6	47
60	Vortices around Janus droplets under externally applied electrical field. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	11
61	Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing. Lab on A Chip, 2016, 16, 3767-3776.	6.0	53
62	Redistribution of mobile surface charges of an oil droplet in water in applied electric field. Advances in Colloid and Interface Science, 2016, 236, 142-151.	14.7	29
63	Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow. Nanoscale, 2016, 8, 18945-18955.	5.6	34
64	Focusing particles by induced charge electrokinetic flow in a microchannel. Electrophoresis, 2016, 37, 666-675.	2.4	21
65	Deformation and Interaction of Droplet Pairs in a Microchannel Under ac Electric Fields. Physical Review Applied, 2015, 4, .	3.8	19
66	Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 2015, 36, 2489-2497.	2.4	26
67	Fabrication of nanochannels on polystyrene surface. Biomicrofluidics, 2015, 9, 024117.	2.4	17
68	Separation of dielectric Janus particles based on polarizability-dependent induced-charge electroosmotic flow. Journal of Colloid and Interface Science, 2015, 448, 297-305.	9.4	11
69	Highâ€throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Electrophoresis, 2015, 36, 495-501.	2.4	18
70	An induction current method for determining the critical micelle concentration and the polarity of surfactants. Colloid and Polymer Science, 2015, 293, 1525-1534.	2.1	15
71	Sizeâ€based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip. Electrophoresis, 2015, 36, 398-404.	2.4	15
72	Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet. Biomicrofluidics, 2015, 9, 044102.	2.4	32

#	Article	IF	Citations
73	Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel. Journal of Colloid and Interface Science, 2015, 440, 126-132.	9.4	35
74	A novel method for measuring zeta potentials of solid–liquid interfaces. Analytica Chimica Acta, 2015, 853, 689-695.	5.4	11
75	A novel microfluidic flow focusing method. Biomicrofluidics, 2014, 8, 054120.	2.4	13
76	Capacitive detection of living microalgae in a microfluidic chip. Sensors and Actuators B: Chemical, 2014, 194, 164-172.	7.8	27
77	Effect of induced surface charge of metal particles on particle sizing by resistive pulse sensing technique. Journal of Colloid and Interface Science, 2014, 423, 20-24.	9.4	6
78	A novel particle separation method based on inducedâ€charge electroâ€osmotic flow and polarizability of dielectric particles. Electrophoresis, 2014, 35, 2922-2929.	2.4	13
79	An induced current method for measuring zeta potential of electrolyte solution–air interface. Journal of Colloid and Interface Science, 2014, 416, 101-104.	9.4	11
80	Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
81	Dual-wavelength fluorescent detection of particles on a novel microfluidic chip. Lab on A Chip, 2013, 13, 843.	6.0	12
82	Experimental validation of induced-charge electrokinetic motion of electrically conducting particles. Electrochimica Acta, 2013, 87, 270-276.	5.2	47
83	Automatic particle detection and sorting in an electrokinetic microfluidic chip. Electrophoresis, 2013, 34, 684-690.	2.4	20
84	A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence. Sensors, 2013, 13, 16075-16089.	3.8	42
85	A MINIATURIZED SYSTEM FOR RAPID AND QUANTITATIVE DETERMINATION OF A COCAINE METABOLITE BY A HOMOGENEOUS ENZYME IMMUNOASSAY. Instrumentation Science and Technology, 2013, 41, 512-523.	1.8	2
86	ALGAE DETECTION AND SHIP'S BALLAST WATER ANALYSIS BY A MICROFLUIDIC LAB-ON-CHIP DEVICE. Instrumentation Science and Technology, 2012, 40, 305-315.	1.8	12
87	Electrokinetic motion of a rectangular nanoparticle in a nanochannel. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	15
88	Electrokinetically-controlled RNA-DNA hybridization assay for foodborne pathogens. Mikrochimica Acta, 2012, 178, 381-387.	5.0	5
89	DC dielectrophoresis separation of marine algae and particles in a microfluidic chip. Science China Chemistry, 2012, 55, 524-530.	8.2	27
90	Electroosmotic flow in a water column surrounded by an immiscible liquid. Journal of Colloid and Interface Science, 2012, 372, 207-211.	9.4	19

#	Article	IF	Citations
91	Micro-valve using induced-charge electrokinetic motion of Janus particle. Lab on A Chip, 2011, 11, 2929.	6.0	44
92	A microfluidic chip for blood plasma separation using electro-osmotic flow control. Journal of Micromechanics and Microengineering, 2011, 21, 085019.	2.6	42
93	Control of flow rate and concentration in microchannel branches by induced-charge electrokinetic flow. Journal of Colloid and Interface Science, 2011, 364, 588-593.	9.4	29
94	Microfluidics cell electroporation. Microfluidics and Nanofluidics, 2011, 10, 703-734.	2.2	122
95	Microfluidic whole-blood immunoassays. Microfluidics and Nanofluidics, 2011, 10, 941-964.	2.2	101
96	Microfluidic DNA hybridization assays. Microfluidics and Nanofluidics, 2011, 11, 367-383.	2.2	33
97	Nanoparticle detection by microfluidic Resistive Pulse Sensor with a submicron sensing gate and dual detecting channels-two stage differential amplifier. Sensors and Actuators B: Chemical, 2011, 155, 930-936.	7.8	30
98	Electrokinetic transport through nanochannels. Electrophoresis, 2011, 32, 1259-1267.	2.4	49
99	Dielectrophoresis in microfluidics technology. Electrophoresis, 2011, 32, 2410-2427.	2.4	310
100	3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochimica Acta, 2011, 56, 4254-4262.	5.2	45
101	Molecular dynamics simulation of nanoscale liquid flows. Microfluidics and Nanofluidics, 2010, 9, 1011-1031.	2.2	134
102	Counting bacteria on a microfluidic chip. Analytica Chimica Acta, 2010, 681, 82-86.	5.4	41
103	Electrophoretic motion of ideally polarizable particles in a microchannel. Electrophoresis, 2009, 30, 773-781.	2.4	41
104	Continuous particle separation by size <i>via</i> ACâ€dielectrophoresis using a labâ€onâ€aâ€chip device with 3â€D electrodes. Electrophoresis, 2009, 30, 766-772.	2.4	65
105	Microfluidic effects of transporting signaling components in cell coculture chips. Microfluidics and Nanofluidics, 2009, 6, 99-107.	2.2	1
106	Experimental characterization of electrical current leakage in poly(dimethylsiloxane) microfluidic devices. Microfluidics and Nanofluidics, 2009, 6, 589-598.	2.2	14
107	Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics, 2009, 6, 431-460.	2.2	171
108	Methods for counting particles in microfluidic applications. Microfluidics and Nanofluidics, 2009, 7, 739.	2.2	111

#	Article	IF	CITATIONS
109	Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochimica Acta, 2009, 54, 1715-1720.	5 . 2	113
110	Induced-charge electrophoretic motion of ideally polarizable particles. Electrochimica Acta, 2009, 54, 3960-3967.	5.2	31
111	DC-Dielectrophoretic separation of biological cells by size. Biomedical Microdevices, 2008, 10, 243-249.	2.8	243
112	Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluidics and Nanofluidics, 2008, 5, 65-76.	2.2	95
113	Effect of Joule heating on electrokinetic transport. Electrophoresis, 2008, 29, 994-1005.	2.4	93
114	Microfluidic differential resistive pulse sensors. Electrophoresis, 2008, 29, 2754-2759.	2.4	59
115	Translational motion of a spherical particle near a planar liquid–fluid interface. Journal of Colloid and Interface Science, 2008, 319, 344-352.	9.4	14
116	Micromixing using induced-charge electrokinetic flow. Electrochimica Acta, 2008, 53, 5827-5835.	5.2	144
117	Simultaneous particle counting and detecting on a chip. Lab on A Chip, 2008, 8, 1943.	6.0	59
118	Experimental characterization of a metal-oxide-semiconductor field-effect transistor-based Coulter counter. Journal of Applied Physics, 2008, 103, 104701-10470110.	2.5	37
119	Wide-spectrum, ultrasensitive fluidic sensors with amplification from both fluidic circuits and metal oxide semiconductor field effect transistors. Applied Physics Letters, 2007, 91, .	3.3	28
120	Electroosmotic flow in microchannels with prismatic elements. Microfluidics and Nanofluidics, 2007, 3, 151-160.	2.2	23
121	Simulation of low speed 3D nanochannel flow. Microfluidics and Nanofluidics, 2007, 3, 417-425.	2.2	11
122	Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied Physics, 2006, 99, 064702.	2.5	104
123	Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients. Journal of Colloid and Interface Science, 2006, 294, 482-491.	9.4	17
124	Electrokinetically controlled concentration gradients in micro-chambers in microfluidic systems. Microfluidics and Nanofluidics, 2006, 2, 141-153.	2.2	11
125	Electroosmotic flow at a liquid–air interface. Microfluidics and Nanofluidics, 2006, 2, 361-365.	2.2	51
126	Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluidics and Nanofluidics, 2006, 2, 493-499.	2.2	70

#	Article	IF	Citations
127	Continuous separation of microparticles by size with Direct current-dielectrophoresis. Electrophoresis, 2006, 27, 694-702.	2.4	181
128	Electrokinetic flow in a free surface-guided microchannel. Journal of Applied Physics, 2006, 99, 054905.	2.5	39
129	Effects of surface heterogeneity on flow circulation in electroosmotic flow in microchannels. Analytica Chimica Acta, 2005, 530, 273-282.	5.4	33
130	Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helicobacter pylori. Analytica Chimica Acta, 2005, 543, 109-116.	5.4	39
131	Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. Journal of Colloid and Interface Science, 2005, 289, 286-290.	9.4	38
132	Eccentric electrophoretic motion of a sphere in circular cylindrical microchannels. Microfluidics and Nanofluidics, 2005, 1, 234-241.	2.2	50
133	A microfluidic chip for heterogeneous immunoassay using electrokinetical control. Microfluidics and Nanofluidics, 2005, 1, 346-355.	2.2	43
134	Multiâ€Functional Particle Detection with Embedded Optical Fibers in a Poly(dimethylsiloxane) Chip. Instrumentation Science and Technology, 2005, 33, 597-607.	1.8	18
135	Dielectrophoretic Force on a Sphere near a Planar Boundary. Langmuir, 2005, 21, 12037-12046.	3.5	45
136	Synthesis of rod-like mesoporous silica with hexagonal appearance using sodium silicate as precursor. Colloid and Polymer Science, 2004, 282, 761-765.	2.1	8
137	Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure. Experiments in Fluids, 2004, 37, 872-882.	2.4	32
138	3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. Journal of Colloid and Interface Science, 2004, 272, 480-488.	9.4	55
139	Effects of spatial gradients of electrical conductivity on chip-based sample injection processes. Analytica Chimica Acta, 2004, 518, 59-68.	5.4	12
140	A NEW MODEL FOR THE ELECTRICAL DOUBLE LAYER INTERACTION BETWEEN TWO SURFACES IN AQUEOUS SOLUTIONS. Journal of Adhesion, 2004, 80, 831-849.	3.0	14
141	Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows. Analytical Chemistry, 2004, 76, 3208-3213.	6.5	252
142	Kinetics of microbubble–solid surface interaction and attachment. AICHE Journal, 2003, 49, 1024-1037.	3.6	16
143	Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. Journal of Colloid and Interface Science, 2003, 261, 402-410.	9.4	626
144	A dynamic loading method for controlling on-chip microfluidic sample injection. Journal of Colloid and Interface Science, 2003, 266, 448-456.	9.4	38

#	Article	IF	Citations
145	Effect of Pentanol on Morphologies and Pore Structure of Mesoporous Silica. Langmuir, 2003, 19, 4269-4271.	3.5	20
146	Three-Dimensional Structure of Electroosmotic Flow over Heterogeneous Surfaces. Journal of Physical Chemistry B, 2003, 107, 12212-12220.	2.6	48
147	Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel. Langmuir, 2003, 19, 5421-5430.	3.5	95
148	Electrokinetic Transport through Rough Microchannels. Analytical Chemistry, 2003, 75, 5747-5758.	6.5	92
149	Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips. Lab on A Chip, 2003, 3, 173.	6.0	18
150	Microchannel Flow with Patchwise and Periodic Surface Heterogeneity. Langmuir, 2002, 18, 8949-8959.	3.5	71
151	Electrophoretic Motion of a Circular Cylindrical Particle in a Circular Cylindrical Microchannel. Langmuir, 2002, 18, 9095-9101.	3.5	58
152	Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing. Langmuir, 2002, 18, 1883-1892.	3. 5	273
153	A New Method of Evaluating the Average Electro-osmotic Velocity in Microchannels. Journal of Colloid and Interface Science, 2002, 250, 238-242.	9.4	57
154	Electrophoretic Motion of a Sphere in a Microchannel under the Gravitational Field. Journal of Colloid and Interface Science, 2002, 251, 331-338.	9.4	20
155	Electroosmotic Flow in Heterogeneous Microchannels. Journal of Colloid and Interface Science, 2001, 243, 255-261.	9.4	96
156	Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method. Journal of Colloid and Interface Science, 2001, 243, 128-135.	9.4	245
157	A Model for Overlapped EDL Fields. Journal of Colloid and Interface Science, 2000, 224, 397-407.	9.4	133
158	Determining ζ Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow. Journal of Colloid and Interface Science, 2000, 225, 421-428.	9.4	73
159	The ζ-Potential of Glass Surface in Contact with Aqueous Solutions. Journal of Colloid and Interface Science, 2000, 226, 328-339.	9.4	171
160	The van der Waals Interaction between a Spherical Particle and a Cylinder. Journal of Colloid and Interface Science, 1999, 217, 60-69.	9.4	37
161	The ζ-Potential of Silicone Oil Droplets Dispersed in Aqueous Solutions. Journal of Colloid and Interface Science, 1998, 206, 346-349.	9.4	33
162	Measurements of the electric charge and surface potential on small aqueous drops in the air by applying the Millikan method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137, 205-215.	4.7	12

Dongqing Li

#	Article	IF	CITATIONS
163	Electric charge on small silicone oil droplets dispersed in ionic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 139, 213-225.	4.7	29