Judith G Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5424089/publications.pdf

Version: 2024-02-01

236925 395702 2,922 34 25 citations h-index papers

33 g-index 34 34 34 1608 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition. Retrovirology, 2016, 13, 89.	2.0	13
2	Nuclear Magnetic Resonance Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Biochemistry, 2016, 55, 2944-2959.	2.5	55
3	Sequence and structural determinants of human APOBEC3H deaminase and anti-HIV-1 activities. Retrovirology, 2015, 12, 3.	2.0	32
4	Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties. Nucleic Acids Research, 2014, 42, 1095-1110.	14.5	68
5	Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein. Nature Chemistry, 2014, 6, 28-33.	13.6	67
6	Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Research, 2014, 193, 52-64.	2.2	13
7	Zinc finger function of HIV-1 nucleocapsid protein is required for removal of 5′-terminal genomic RNA fragments: A paradigm for RNA removal reactions in HIV-1 reverse transcription. Virus Research, 2013, 171, 346-355.	2.2	9
8	Obituary. Virus Research, 2013, 171, 356.	2.2	0
9	The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology, 2011, 421, 253-265.	2.4	51
10	Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications. Virology, 2010, 405, 556-567.	2.4	41
11	Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biology, 2010, 7, 754-774.	3.1	141
12	Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Research, 2009, 37, 1755-1766.	14.5	22
13	HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19539-19544.	7.1	53
14	Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Research, 2007, 35, 3974-3987.	14.5	23
15	Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Research, 2007, 35, 7096-7108.	14.5	281
16	A second-site suppressor significantly improves the defective phenotype imposed by mutation of an aromatic residue in the N-terminal domain of the HIV-1 capsid protein. Virology, 2007, 359, 105-115.	2.4	10
17	Biochemical Activities of Highly Purified, Catalytically Active Human APOBEC3G: Correlation with Antiviral Effect. Journal of Virology, 2006, 80, 5992-6002.	3.4	184
18	Effect of Polypurine Tract (PPT) Mutations on Human Immunodeficiency Virus Type 1 Replication: a Virus with a Completely Randomized PPT Retains Low Infectivity. Journal of Virology, 2005, 79, 6859-6867.	3.4	23

#	Article	IF	CITATIONS
19	Nucleic Acid Chaperone Activity of HIVâ€1 Nucleocapsid Protein: Critical Role in Reverse Transcription and Molecular Mechanism. Progress in Molecular Biology and Translational Science, 2005, 80, 217-286.	1.9	302
20	Alteration of Nucleic Acid Structure and Stability Modulates the Efficiency of Minus-Strand Transfer Mediated by the HIV-1 Nucleocapsid Protein. Journal of Biological Chemistry, 2004, 279, 44154-44165.	3.4	48
21	Nucleic Acid Conformational Changes Essential for HIV-1 Nucleocapsid Protein-mediated Inhibition of Self-priming in Minus-strand Transfer. Journal of Molecular Biology, 2003, 325, 1-10.	4.2	67
22	Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants Containing Cores with Abnormally High Levels of Capsid Protein and Virtually No Reverse Transcriptase. Journal of Virology, 2003, 77, 12592-12602.	3.4	50
23	Efficient Initiation of HIV-1 Reverse Transcriptionin Vitro. Journal of Biological Chemistry, 2003, 278, 14185-14195.	3.4	44
24	Subtle Alterations of the Native Zinc Finger Structures Have Dramatic Effects on the Nucleic Acid Chaperone Activity of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein. Journal of Virology, 2002, 76, 4370-4378.	3.4	100
25	Human Immunodeficiency Virus Type 1 N-Terminal Capsid Mutants That Exhibit Aberrant Core Morphology and Are Blocked in Initiation of Reverse Transcription in Infected Cells. Journal of Virology, 2001, 75, 9357-9366.	3.4	135
26	Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer. Journal of Virology, 2000, 74, 8980-8988.	3.4	192
27	A Mechanism for Plus-Strand Transfer Enhancement by the HIV-1 Nucleocapsid Protein during Reverse Transcriptionâ€,‡. Biochemistry, 2000, 39, 9084-9091.	2.5	94
28	Molecular Requirements for Human Immunodeficiency Virus Type 1 Plus-Strand Transfer: Analysis in Reconstituted and Endogenous Reverse Transcription Systems. Journal of Virology, 1999, 73, 4794-4805.	3.4	63
29	Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends in Biochemical Sciences, 1998, 23, 297-301.	7. 5	370
30	Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides. Journal of Biomedical Science, 1998, 5, 192-202.	7.0	8
31	Actinomycin D Inhibits Human Immunodeficiency Virus Type 1 Minus-Strand Transfer in In Vitro and Endogenous Reverse Transcriptase Assays. Journal of Virology, 1998, 72, 6716-6724.	3.4	68
32	Mutating a Conserved Motif of the HIV-1 Reverse Transcriptase Palm Subdomain Alters Primer Utilizationâ€. Biochemistry, 1997, 36, 5758-5768.	2.5	55
33	Defects in Primer-Template Binding, Processive DNA Synthesis, and RNase H Activity Associated with Chimeric Reverse Transcriptases Having the Murine Leukemia Virus Polymerase Domain Joined to Escherichia coli RNase H. Biochemistry, 1995, 34, 5018-5029.	2.5	54
34	Deficiency of 60 to 70 <i>S</i> RNA in Murine Leukemia Virus Particles Assembled in Cells Treated with Actinomycin D. Journal of Virology, 1974, 14, 152-161.	3.4	186