
Arthur F Lutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5423776/publications.pdf Version: 2024-02-01

Δρτημό Είμτς

#	Article	IF	CITATIONS
1	Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.	27.8	885
2	Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 2014, 4, 587-592.	18.8	818
3	Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 2017, 549, 257-260.	27.8	525
4	Selecting representative climate models for climate change impact studies: an advanced envelopeâ€based selection approach. International Journal of Climatology, 2016, 36, 3988-4005.	3.5	262
5	Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 2015, 19, 4673-4687.	4.9	240
6	Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes. PLoS ONE, 2016, 11, e0165630.	2.5	234
7	Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2019, 2, 594-601.	23.7	197
8	The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions. Nature Climate Change, 2019, 9, 503-511.	18.8	130
9	Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE, 2017, 12, e0190224.	2.5	107
10	SPHY v2.0: Spatial Processes in HYdrology. Geoscientific Model Development, 2015, 8, 2009-2034.	3.6	84
11	Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrology and Earth System Sciences, 2013, 17, 3661-3677.	4.9	65
12	Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at Seasonal to Decadal Time Scales. Water Resources Research, 2021, 57, e2020WR029266.	4.2	63
13	South Asian river basins in a 1.5°C warmer world. Regional Environmental Change, 2019, 19, 833-847.	2.9	55
14	Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrology and Earth System Sciences, 2018, 22, 6297-6321.	4.9	54
15	Rapid climate change during the Weichselian Lateglacial in Ireland: Chironomid-inferred summer temperatures from Fiddaun, Co. Galway. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316, 1-11.	2.3	41
16	South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change, 2022, 12, 566-573.	18.8	38
17	Twenty-first-century glacio-hydrological changes in the Himalayan headwater Beas River basin. Hydrology and Earth System Sciences, 2019, 23, 1483-1503.	4.9	31
18	Climate projections for glacier change modelling over the Himalayas. International Journal of Climatology, 2020, 40, 1738-1754.	3.5	18

Arthur F Lutz

#	Article	IF	CITATIONS
19	A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 2021, 786, 147142.	8.0	18
20	Water availability on the Third Pole: A review. Water Security, 2019, 7, 100033.	2.5	17
21	Modeling the Response of the Langtang Glacier and the Hintereisferner to a Changing Climate Since the Little Ice Age. Frontiers in Earth Science, 2019, 7, .	1.8	16
22	The Impact of Meteorological and Hydrological Memory on Compound Peak Flows in the Rhine River Basin. Atmosphere, 2019, 10, 171.	2.3	16
23	Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin. Hydrology and Earth System Sciences, 2022, 26, 861-883.	4.9	16
24	Knowledge Priorities on Climate Change and Water in the Upper Indus Basin: A Horizon Scanning Exercise to Identify the Top 100 Research Questions in Social and Natural Sciences. Earth's Future, 2022, 10, .	6.3	14
25	From narratives to numbers: Spatial downscaling and quantification of future water, food & energy security requirements in the Indus basin. Futures, 2021, 133, 102831.	2.5	10
26	Cost effective adaptation to flood: sanitation interventions in the Gandak river basin, India. Climate and Development, 2020, 12, 717-729.	3.9	3
27	Using large ensemble modelling to derive future changes in mountain specific climate indicators in a 2 and 3°C warmer world in High Mountain Asia. International Journal of Climatology, 2021, 41, E964.	3.5	3