
Soshan Cheong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542255/publications.pdf Version: 2024-02-01

SOSHAN CHEONC

#	Article	IF	CITATIONS
1	Quantum Dot Passivation of Halide Perovskite Films with Reduced Defects, Suppressed Phase Segregation, and Enhanced Stability. Advanced Science, 2022, 9, e2102258.	11.2	35
2	A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nature Catalysis, 2022, 5, 231-237.	34.4	133
3	Perovskite Quantum Dot Solar Cells Fabricated from Recycled Lead-Acid Battery Waste. , 2022, 4, 120-127.		7
4	Twoâ€Ðimensional Ultraâ€Thin Nanosheets with Extraordinarily High Drug Loading and Long Blood Circulation for Cancer Therapy. Small, 2022, 18, e2200299.	10.0	24
5	Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles. Accounts of Chemical Research, 2022, 55, 1693-1702.	15.6	12
6	Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 11094-11098.	13.7	27
7	Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 2021, 12, 466.	12.8	176
8	Role of the Secondary Metal in Ordered and Disordered Pt–M Intermetallic Nanoparticles: An Example of Pt ₃ Sn Nanocubes for the Electrocatalytic Methanol Oxidation. ACS Catalysis, 2021, 11, 2235-2243.	11.2	42
9	How to build a bone? - Hydroxyapatite or Posner's clusters as bone minerals. Open Ceramics, 2021, 6, 100092.	2.0	11
10	Designing Undercoordinated Ni–N _{<i>x</i>} and Fe–N _{<i>x</i>} on Holey Graphene for Electrochemical CO ₂ Conversion to Syngas. ACS Nano, 2021, 15, 12006-12018.	14.6	68
11	Metrology of convex-shaped nanoparticles <i>via</i> soft classification machine learning of TEM images. Nanoscale Advances, 2021, 3, 6956-6964.	4.6	6
12	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	17.4	70
13	Photochemical upconversion of near-infrared light from below the silicon bandgap. Nature Photonics, 2020, 14, 585-590.	31.4	88
14	Synthetic Bilayers on Mica from Self-Assembly of Hydrogen-Bonded Triazines. Langmuir, 2020, 36, 13301-13311.	3.5	1
15	Controlling the Number of Branches and Surface Facets of Pdâ€Core Ruâ€Branched Nanoparticles to Make Highly Active Oxygen Evolution Reaction Electrocatalysts. Chemistry - A European Journal, 2020, 26, 15501-15504.	3.3	5
16	Alkali Metal-Modified P2 NaxMnO2: Crystal Structure and Application in Sodium-Ion Batteries. Inorganic Chemistry, 2020, 59, 12143-12155.	4.0	9
17	Selectively detecting attomolar concentrations of proteins using gold lined nanopores in a nanopore blockade sensor. Chemical Science, 2020, 11, 12570-12579.	7.4	25
18	Facettierte verzweigte Nickelâ€Nanopartikel mit variierbarer Verzweigungsläge für die hochaktive elektrokatalytische Oxidation von Biomasse. Angewandte Chemie, 2020, 132, 15615-15620.	2.0	18

SOSHAN CHEONG

#	Article	IF	CITATIONS
19	Facile synthesis of Ge1â^'x Sn x nanowires. Materials Research Express, 2020, 7, 064004.	1.6	1
20	Increasing the Formation of Active Sites on Highly Crystalline Co Branched Nanoparticles for Improved Oxygen Evolution Reaction Electrocatalysis. ChemCatChem, 2020, 12, 3126-3131.	3.7	6
21	Preserving the Exposed Facets of Pt ₃ Sn Intermetallic Nanocubes During an Order to Disorder Transition Allows the Elucidation of the Effect of the Degree of Alloy Ordering on Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 3231-3239.	13.7	57
22	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	13.8	83
23	Controlling Pt Crystal Defects on the Surface of Ni–Pt Core–Shell Nanoparticles for Active and Stable Electrocatalysts for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 5995-6000.	5.0	15
24	Recent Development in Focused Ion Beam Nanofabrication. , 2019, , 327-356.		4
25	Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale, 2019, 11, 18995-19011.	5.6	110
26	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	12.8	76
27	Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules. Journal of the American Chemical Society, 2019, 141, 14093-14097.	13.7	139
28	Direct Growth of Highly Strained Pt Islands on Branched Ni Nanoparticles for Improved Hydrogen Evolution Reaction Activity. Journal of the American Chemical Society, 2019, 141, 16202-16207.	13.7	113
29	Investigation of K modified P2 Na _{0.7} Mn _{0.8} Mg _{0.2} O ₂ as a cathode material for sodium-ion batteries. CrystEngComm, 2019, 21, 172-181.	2.6	12
30	Formation of Branched Ruthenium Nanoparticles for Improved Electrocatalysis of Oxygen Evolution Reaction. Small, 2019, 15, e1804577.	10.0	54
31	Rb/Cs-Modified P2 Na _{0.7} Mn _{0.8} Mg _{0.2} O ₂ : Application in Sodium-Ion Batteries. ACS Omega, 2019, 4, 5784-5794.	3.5	4
32	Raspberry-like small multicore gold nanostructures for efficient photothermal conversion in the first and second near-infrared windows. Chemical Communications, 2019, 55, 4055-4058.	4.1	20
33	Ultrathin Feâ€N Nanosheets Coordinated Feâ€Đoped CoNi Alloy Nanoparticles for Electrochemical Water Splitting. Particle and Particle Systems Characterization, 2019, 36, 1800252.	2.3	21
34	Photostability of oxygen-sensitive core-shell nanofibers. Sensors and Actuators B: Chemical, 2019, 283, 269-277.	7.8	6
35	Simultaneous Functionalization of Carbon Surfaces with Rhodium and Iridium Organometallic Complexes: Hybrid Bimetallic Catalysts for Hydroamination. Organometallics, 2019, 38, 780-787.	2.3	17
36	Revealing Molecular Level Indicators of Collagen Stability: Minimizing Chrome Usage in Leather Processing. ACS Sustainable Chemistry and Engineering, 2018, 6, 7096-7104.	6.7	36

Soshan Cheong

#	Article	IF	CITATIONS
37	From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 4686-4694.	10.3	23
38	Real-Time Synchrotron Small-Angle X-ray Scattering Studies of Collagen Structure during Leather Processing. Industrial & Engineering Chemistry Research, 2018, 57, 63-69.	3.7	18
39	Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system. Journal of Colloid and Interface Science, 2018, 512, 404-410.	9.4	39
40	Quantifying Inorganic Nitrogen Assimilation by Synechococcus Using Bulk and Single-Cell Mass Spectrometry: A Comparative Study. Frontiers in Microbiology, 2018, 9, 2847.	3.5	6
41	Electrocatalytic Nanoparticles That Mimic the Three-Dimensional Geometric Architecture of Enzymes: Nanozymes. Journal of the American Chemical Society, 2018, 140, 13449-13455.	13.7	72
42	Cubic-Core Hexagonal-Branch Mechanism To Synthesize Bimetallic Branched and Faceted Pd–Ru Nanoparticles for Oxygen Evolution Reaction Electrocatalysis. Journal of the American Chemical Society, 2018, 140, 12760-12764.	13.7	82
43	Biodegradable 2D Fe–Al Hydroxide for Nanocatalytic Tumorâ€Ðynamic Therapy with Tumor Specificity. Advanced Science, 2018, 5, 1801155.	11.2	100
44	Pd–Ru core–shell nanoparticles with tunable shell thickness for active and stable oxygen evolution performance. Nanoscale, 2018, 10, 15173-15177.	5.6	42
45	Threeâ€Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2018, 130, 10398-10402.	2.0	21
46	Threeâ€Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 10241-10245.	13.8	83
47	Carbon dioxide as a pH-switch anti-solvent for biomass fractionation and pre-treatment with aqueous hydroxide solutions. Green Chemistry, 2017, 19, 2129-2134.	9.0	10
48	Can sodium silicates affect collagen structure during tanning? Insights from small angle X-ray scattering (SAXS) studies. RSC Advances, 2017, 7, 11665-11671.	3.6	14
49	Stability of polyelectrolyte-coated iron nanoparticles for T 2 -weighted magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 2017, 439, 251-258.	2.3	18
50	Size and shape evolution of highly magnetic iron nanoparticles from successive growth reactions. Chemical Communications, 2017, 53, 11548-11551.	4.1	22
51	Nanoscale upconversion for oxygen sensing. Materials Science and Engineering C, 2017, 70, 76-84.	7.3	26
52	Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. ELife, 2017, 6, .	6.0	74
53	Upconverter-powered oxygen sensing in electrospun polymeric bilayers. Sensors and Actuators B: Chemical, 2016, 235, 197-205.	7.8	5
54	ZnO/PVP nanoparticles induce gelation in type I collagen. European Polymer Journal, 2016, 75, 399-405.	5.4	13

SOSHAN CHEONG

#	Article	IF	CITATIONS
55	Monitoring Ligandâ€Mediated Growth and Aggregation of Metal Nanoparticles and Nanodendrites by In Situ Synchrotron Scattering Techniques. ChemNanoMat, 2015, 1, 109-114.	2.8	13
56	Gold over Branched Palladium Nanostructures for Photothermal Cancer Therapy. ACS Nano, 2015, 9, 12283-12291.	14.6	102
57	How hollow structures form from crystalline iron–iron oxide core–shell nanoparticles in the electron beam. Chemical Communications, 2013, 49, 6203.	4.1	18
58	Au–Pd Core–Shell Nanoparticles as Alcohol Oxidation Catalysts: Effect of Shape and Composition. ChemSusChem, 2013, 6, 1858-1862.	6.8	21
59	Earthworms lit with quantum dots. Nature Nanotechnology, 2013, 8, 6-7.	31.5	12
60	Gold–Palladium Core–Shell Nanocrystals with Size and Shape Control Optimized for Catalytic Performance. Angewandte Chemie - International Edition, 2013, 52, 1477-1480.	13.8	104
61	Can Polymorphism be Used to form Branched Metal Nanostructures?. Advanced Materials, 2013, 25, 1552-1556.	21.0	72
62	How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis. Nano Today, 2013, 8, 198-215.	11.9	94
63	One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release. Chemical Communications, 2013, 49, 4540.	4.1	11
64	Shape Control from Thermodynamic Growth Conditions: The Case of hcp Ruthenium Hourglass Nanocrystals. Journal of the American Chemical Society, 2013, 135, 606-609.	13.7	67
65	Ostwald's Rule of Stages and Its Role in CdSe Quantum Dot Crystallization. Journal of the American Chemical Society, 2012, 134, 17046-17052.	13.7	48
66	Synthesis, Alignment, and Magnetic Properties of Monodisperse Nickel Nanocubes. Journal of the American Chemical Society, 2012, 134, 855-858.	13.7	141
67	Synthesis and Stability of Highly Crystalline and Stable Iron/Iron Oxide Core/Shell Nanoparticles for Biomedical Applications. ChemPlusChem, 2012, 77, 135-140.	2.8	37
68	Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Chemical Communications, 2011, 47, 9221.	4.1	58
69	Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2011, 50, 4206-4209.	13.8	148
70	Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale, 2010, 2, 2045.	5.6	305
71	Ultrafast Growth of Highly Branched Palladium Nanostructures for Catalysis. ACS Nano, 2010, 4, 396-402.	14.6	194
72	In Situ and Ex Situ Studies of Platinum Nanocrystals: Growth and Evolution in Solution. Journal of the American Chemical Society, 2009, 131, 14590-14595.	13.7	157

#	Article	IF	CITATIONS
73	Linking Phase Segregation and Photovoltaic Performance of Mixed-Halide Perovskite Films through Grain Size Engineering. ACS Energy Letters, 0, , 1649-1658.	17.4	33