Jorge IvÃ;n Castillo-Quan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5422420/publications.pdf

Version: 2024-02-01

LORCE WÃIN CASTULO-OUAN

#	Article	IF	CITATIONS
1	Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Reports, 2016, 15, 638-650.	6.4	163
2	Loss of <i>PLA2G6</i> leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain, 2015, 138, 1801-1816.	7.6	143
3	From white to brown fat through the PGC-1α-dependent myokine irisin: implications for diabetes and obesity. DMM Disease Models and Mechanisms, 2012, 5, 293-295.	2.4	127
4	A <i>Drosophila</i> Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin. Journal of Neuroscience, 2016, 36, 11654-11670.	3.6	117
5	Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease. PLoS Genetics, 2017, 13, e1006593.	3.5	102
6	Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer's disease. Frontiers in Aging Neuroscience, 2014, 6, 190.	3.4	81
7	A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20817-20819.	7.1	63
8	Untangling Longevity, Dauer, and Healthspan in <i>Caenorhabditis elegans</i> Insulin/IGF-1-Signalling. Gerontology, 2018, 64, 96-104.	2.8	53
9	The emerging role of autophagic-lysosomal dysfunction in Gaucher disease and Parkinson's disease. Neural Regeneration Research, 2017, 12, 380.	3.0	47
10	Agephagy – Adapting Autophagy for Health During Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 308.	3.7	43
11	Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genetics, 2020, 16, e1009083.	3.5	43
12	Metformin: Restraining Nucleocytoplasmic Shuttling to Fight Cancer and Aging. Cell, 2016, 167, 1670-1671.	28.9	38
13	Genetics and Pharmacology of Longevity. Advances in Genetics, 2015, 90, 1-101.	1.8	35
14	Parkin' control: regulation of PGC-1α through PARIS in Parkinson's disease. DMM Disease Models and Mechanisms, 2011, 4, 427-429.	2.4	29
15	Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation. Rare Diseases (Austin, Tex), 2016, 4, e1128616.	1.8	12
16	Insulin–cortisol interaction in depression and other neurological diseases: An alternative hypothesis. Psychoneuroendocrinology, 2007, 32, 854-855.	2.7	10
17	Cortisol Secretion in Patients With Type 2 Diabetes: Relationship With Chronic Complications: Response to Chiodini et al Diabetes Care, 2007, 30, e49-e49.	8.6	8
18	Rosiglitazone Effects to Ameliorate Alzheimer's Disease Pathogenic Features: Insulin Signaling and Neurotrophic Factors. Journal of Neuropsychiatry and Clinical Neurosciences, 2009, 21, 347-348.	1.8	6

#	Article	IF	CITATIONS
19	Insulin resistance, hypercortisolism, polycystic ovarian syndrome, and depression—nonrandom associations?. Fertility and Sterility, 2008, 89, 1029-1030.	1.0	2
20	Rosiglitazone Effects to Ameliorate Alzheimer's Disease Pathogenic Features: Insulin Signaling and Neurotrophic Factors. Journal of Neuropsychiatry and Clinical Neurosciences, 2009, 21, 347-348.	1.8	2
21	A NOVEL MODEL OF GBA1-ASSOCIATED PARKINSON'S DISEASE IMPLICATES AUTOPHAGY. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, e1.68-e1.	1.9	0
22	Reply: Glial mitochondropathy in infantile neuroaxonal dystrophy: pathophysiological and therapeutic implications. Brain, 2016, 139, e68-e68.	7.6	0