Tomaso l Trombetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5422274/publications.pdf

Version: 2024-02-01

98 papers 1,612 citations

304743 22 h-index 36 g-index

102 all docs $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked

842 citing authors

#	Article	IF	CITATIONS
1	Tensile properties and microstructural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 106, 3693-3705.	3.0	107
2	Linear dynamic modeling of a uni-axial servo-hydraulic shaking table system. Earthquake Engineering and Structural Dynamics, 2000, 29, 1375-1404.	4.4	90
3	A Five-Step Procedure for the Dimensioning of Viscous Dampers to Be Inserted in Building Structures. Journal of Earthquake Engineering, 2010, 14, 417-447.	2.5	80
4	Physical and Numerical Approaches for the Optimal Insertion of Seismic Viscous Dampers in Shear-Type Structures. Journal of Earthquake Engineering, 2007, 11, 787-828.	2.5	78
5	Experimental results for structural design of Wire-and-Arc Additive Manufactured stainless steel members. Journal of Constructional Steel Research, 2020, 167, 105858.	3.9	67
6	ADDED VISCOUS DAMPERS IN SHEAR-TYPE STRUCTURES: THE EFFECTIVENESS OF MASS PROPORTIONAL DAMPING. Journal of Earthquake Engineering, 2004, 8, 275-313.	2.5	55
7	On the influence of the geometrical irregularities in the mechanical response of Wire-and-Arc Additively Manufactured planar elements. Journal of Constructional Steel Research, 2021, 178, 106490.	3.9	55
8	On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems. Journal of Sound and Vibration, 2006, 292, 21-58.	3.9	49
9	Novel schemes for inserting seismic dampers in shear-type systems based upon the mass proportional component of the Rayleigh damping matrix. Journal of Sound and Vibration, 2007, 302, 486-526.	3.9	49
10	Results of pseudo-static tests with cyclic horizontal load on cast in situ sandwich squat concrete walls. Engineering Structures, 2013, 54, 131-149.	5. 3	43
11	Crescent shaped braces for the seismic design of building structures. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1485-1502.	3.1	36
12	On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes. Bulletin of Earthquake Engineering, 2012, 10, 1535-1560.	4.1	34
13	SHAKING TABLE DYNAMICS: RESULTS FROM A TEST-ANALYSIS COMPARISON STUDY. Journal of Earthquake Engineering, 2002, 6, 513-551.	2.5	32
14	Experimentally-validated modelling of thin RC sandwich walls subjected to seismic loads. Engineering Structures, 2016, 119, 95-109.	5.3	32
15	A "direct five-step procedure―for the preliminary seismic design of buildings with added viscous dampers. Engineering Structures, 2018, 173, 933-950.	5.3	32
16	Assessment of design mechanical parameters and partial safety factors for Wire-and-Arc Additive Manufactured stainless steel. Engineering Structures, 2020, 225, 111314.	5.3	31
17	Experimental characterization, modeling and identification of the NEES-UCSD shake table mechanical system. Earthquake Engineering and Structural Dynamics, 2008, 37, 243-264.	4.4	30
18	On the dimensioning of viscous dampers for the mitigation of the earthquake-induced effects in moment-resisting frame structures. Bulletin of Earthquake Engineering, 2013, 11, 2429-2446.	4.1	29

#	Article	IF	CITATIONS
19	Experimental tests on Crescent Shaped Braces hysteretic devices. Engineering Structures, 2017, 144, 185-200.	5.3	28
20	Shakingâ€table tests of flatâ€bottom circular silos containing grainâ€like material. Earthquake Engineering and Structural Dynamics, 2016, 45, 69-89.	4.4	27
21	New insight into and simplified approach to seismic analysis of torsionally coupled one-story, elastic systems. Journal of Sound and Vibration, 2005, 286, 265-312.	3.9	24
22	Peak velocities estimation for a direct five-step design procedure of inter-storey viscous dampers. Bulletin of Earthquake Engineering, 2016, 14, 599-619.	4.1	24
23	Simultaneous design of the topology and the build orientation of Wire-and-Arc Additively Manufactured structural elements. Computers and Structures, 2021, 242, 106370.	4.4	23
24	In-plane shear behaviour of thin low reinforced concrete panels for earthquake re-construction. Materials and Structures/Materiaux Et Constructions, 2013, 46, 841-856.	3.1	22
25	Force reduction factor for building structures equipped with added viscous dampers. Bulletin of Earthquake Engineering, 2013, 11, 1661-1681.	4.1	22
26	Preliminary interpretation of shaking-table response of a full-scale 3-storey building composed of thin reinforced concrete sandwich walls. Engineering Structures, 2014, 76, 75-89.	5.3	22
27	AA5083 (Al–Mg) plates produced by wire-and-arc additive manufacturing: effect of specimen orientation on microstructure and tensile properties. Progress in Additive Manufacturing, 2021, 6, 479-494.	4.8	22
28	Influence of Interlayer Forced Air Cooling on Microstructure and Mechanical Properties of Wire Arc Additively Manufactured 304L Austenitic Stainless Steel. Steel Research International, 2021, 92, 2100175.	1.8	22
29	Mechanical response of dot-by-dot wire-and-arc additively manufactured 304L stainless steel bars under tensile loading. Construction and Building Materials, 2022, 318, 125925.	7.2	22
30	Multi-performance seismic design through an enhanced first-storey isolation system. Engineering Structures, 2014, 59, 495-506.	5.3	21
31	Computational design and manufacturing of a half-scaled 3D-printed stainless steel diagrid column. Additive Manufacturing, 2020, 36, 101505.	3.0	21
32	Geometrical Characterization of Wire-and-Arc Additive Manufactured Steel Element. Advanced Materials Letters, 2019, 10, 695-699.	0.6	21
33	Refinements to the Silvestri's theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material. Bulletin of Earthquake Engineering, 2015, 13, 3493-3525.	4.1	20
34	Seismic Modal Contribution Factors. Bulletin of Earthquake Engineering, 2015, 13, 2867-2891.	4.1	18
35	On non-linear dynamic analysis in the frequency domain: Algorithms and applications. Earthquake Engineering and Structural Dynamics, 1994, 23, 363-388.	4.4	17
36	Physically-based prediction of the maximum corner displacement magnification of one-storey eccentric systems. Bulletin of Earthquake Engineering, $2013, 11, 1467-1491$.	4.1	17

3

#	Article	IF	CITATIONS
37	Experimentally-validated orthotropic elastic model for Wire-and-Arc Additively Manufactured stainless steel. Additive Manufacturing, 2021, 42, 101999.	3.0	17
38	An approach for the mechanical characterisation of the Asinelli Tower (Bologna) in presence of insufficient experimental data. Journal of Cultural Heritage, 2015, 16, 536-543.	3.3	16
39	Stochastic-based damping reduction factors. Soil Dynamics and Earthquake Engineering, 2016, 80, 168-176.	3.8	16
40	Structural Interpretation of Data from Static and Dynamic Structural Health Monitoring of Monumental Buildings. Key Engineering Materials, 0, 747, 431-439.	0.4	16
41	Inserting the mass proportional damping (MPD) system in a concrete shear-type structure. Structural Engineering and Mechanics, 2003, 16, 177-193.	1.0	16
42	On the peak inter-storey drift and peak inter-storey velocity profiles for frame structures. Soil Dynamics and Earthquake Engineering, 2017, 94, 18-34.	3.8	15
43	A statistical study on the peak ground parameters and amplification factors for an updated design displacement spectrum and a criterion for the selection of recorded ground motions. Engineering Structures, 2014, 76, 163-176.	5.3	14
44	Seismic design of a precast r.c. structure equipped with viscous dampers. Earthquake and Structures, 2011, 2, 297-321.	1.0	14
45	Numerical Verification of the Effectiveness of the "Alpha―Method for the Estimation of the Maximum Rotational Elastic Response of Eccentric Systems. Journal of Earthquake Engineering, 2008, 12, 249-280.	2.5	13
46	A Structural Analysis of the Modena Cathedral. International Journal of Architectural Heritage, 0, , .	3.1	13
47	On the seismic behavior of a reinforced concrete building with masonry infills collapsed during the 2009 L'Aquila earthquake. Earthquake and Structures, 2014, 6, 45-69.	1.0	12
48	Long-Term Seismometric Monitoring of the Two Towers of Bologna (Italy): Modal Frequencies Identification and Effects Due to Traffic Induced Vibrations. Frontiers in Built Environment, 2020, 6, .	2.3	12
49	The role of ductility in the collapse of a long-span steel roof in North Italy. Engineering Failure Analysis, 2017, 82, 243-265.	4.0	10
50	Title is missing!. Journal of Earthquake Engineering, 2002, 6, 513.	2.5	9
51	Comprehensive Review on the Dynamic and Seismic Behavior of Flat-Bottom Cylindrical Silos Filled With Granular Material. Frontiers in Built Environment, 2022, 7, .	2.3	9
52	On the Fundamental Periods of Vibration of Flat-Bottom Ground-Supported Circular Silos containing Gran-like Material. Procedia Engineering, 2017, 199, 248-253.	1.2	8
53	Coupled Response of Frame Structures Connected to a Strongback. Journal of Structural Engineering, 2018, 144, .	3.4	7
54	Experimental behaviour of Wireâ€andâ€Arc Additively Manufactured stainless steel rods. Ce/Papers, 2021, 4, 2387-2392.	0.3	7

#	Article	IF	CITATIONS
55	Analytical estimation of the key performance points of the tensile force-displacement response of Crescent Shaped Braces. Soil Dynamics and Earthquake Engineering, 2021, 148, 106839.	3.8	7
56	A comprehensive study on the seismic response of one-storey asymmetric systems. Bulletin of Earthquake Engineering, 2017, 15, 1497-1517.	4.1	6
57	A direct design procedure for frame structures with added viscous dampers for the mitigation of earthquake-induced vibrations. Procedia Engineering, 2017, 199, 1755-1760.	1.2	5
58	Seismic-Proof Buildings in Developing Countries. Frontiers in Built Environment, 2017, 3, .	2.3	5
59	High performance mortar for ductile seismic-resistant unreinforced masonry systems. Construction and Building Materials, 2020, 245, 118385.	7.2	4
60	A direct procedure for the seismic design of frame structures with added viscous dampers. International Journal of Safety and Security Engineering, 2017, 7, 498-509.	1.0	4
61	The structural behaviour of the masonry vaults of the Cathedral of Modena., 2017,,.		4
62	Strong-Back System Coupled with Framed Structure to Control the Building Seismic Response. Journal of Civil & Environmental Engineering, 2017, 07, .	0.1	3
63	A time domain approach for data interpretation from longâ€ŧerm static monitoring of historical structures. Structural Control and Health Monitoring, 2021, 28, e2708.	4.0	3
64	Seismic Design and Performances of Frame Structures Connected to a Strongback System and Equipped with Different Configurations of Supplemental Viscous Dampers. Frontiers in Built Environment, 2021, 7, .	2.3	3
65	Seismic horizontal forces exerted by granular material on flat bottom silos: experimental and analytical results. , $2016, $, .		3
66	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 275.	2.5	2
67	Optimization studies on diagrid columns realized with Wire-and-Arc Additive Manufacturing process. , 2019, , .		2
68	AN ASSESSMENT OF THE STRUCTURAL BEHAVIOUR OF THE GARISENDA TOWER IN BOLOGNA THROUGH FINITE ELEMENT MODELLING AND STRUCTURAL HEALTH MONITORING. , 2019, , .		2
69	Structural evaluation of the Palazzo della Civiltà Italiana in Rome. Structure and Infrastructure Engineering, 2011, 7, 147-162.	3.7	1
70	Italy's new forensic engineering research centre: a progress report. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2015, 168, 17-24.	0.5	1
71	SSHM and DSHM for a better knowledge and risk prevention of historical buildings: The cases of the Two Towers in Bologna and the Cathedral in Modena. , 2015, , .		1
72	Application of a Direct Procedure for the Seismic Retrofit of a R/C School Building Equipped with Viscous Dampers. Frontiers in Built Environment, 2015, 1 , .	2.3	1

#	Article	IF	Citations
73	Shaking Table Test Design to Evaluate Earthquake Capacity of a 3-Storey Building Specimen Composed of Cast-In-Situ Concrete Walls. Geotechnical, Geological and Earthquake Engineering, 2015, , 345-358.	0.2	1
74	A Direct Five-Step Procedure for the Dimensioning of Viscous Dampers to Be Inserted in Frame Structures. Applied Mechanics and Materials, 2016, 847, 233-239.	0.2	1
75	Estimating Fundamental Dynamic Properties of Structures with Supplemental Dampers by Means of Generalized Single Degree of Freedom Systems. Journal of Earthquake Engineering, 2020, , 1-30.	2.5	1
76	Analysis of the Dynamic Behaviour of Squat Silos Containing Grain-like Material Subjected to Shaking Table Tests—ASESGRAM Final Report. Geotechnical, Geological and Earthquake Engineering, 2015, , 437-457.	0.2	1
77	EXPERIMENTS ON CRESCENT SHAPED BRACES. Proceedings of International Structural Engineering and Construction, 2015, 2, .	0.1	1
78	A Case Study of a Building in L'Aquila, Italy for Evaluating the Effects of Masonry Infills on the Seismic Behavior of R.C. Frame Structures. , 2010, , .		0
79	Stiffness-Strength-Ductility Design Approach: an application to a five-storey steel building structure. IABSE Symposium Report, 2010, , .	0.0	0
80	Correlations Between the Experimental Results of Pseudo-Static Tests with Cyclic Horizontal Load on Concrete/Polystyrene Sandwich Bearing Panels and their analytical counterparts. IABSE Symposium Report, 2010, , .	0.0	0
81	Identification of Uniform Hazard Time-Histories for Seismic Design. , 2010, , .		0
82	Seismic Analysis for the Structural Retrofit of "Palazzo della Civiltà Italiana―in Rome EUR, Italy. Advanced Materials Research, 2010, 133-134, 753-758.	0.3	0
83	A Special Solution for Lateral-Resisting Systems Capable of Multiple Seismic Performances. , 2011, , .		0
84	Physically Based Prediction of the Maximum Corner Displacement of One-Storey Eccentric Systems. Geotechnical, Geological and Earthquake Engineering, 2013, , 137-153.	0.2	0
85	The first year of activities of the "Observatory Claudio Ceccoliâ€, on the defects of the building structures. , 2014, , .		0
86	Reference Quantities and Values for a Possible Interpretation of the Data Acquired from Monitoring System of Historical Buildings. Geotechnical, Geological and Earthquake Engineering, 2015, , 111-126.	0.2	0
87	Structural Strengthening of the Portico of the Santa Maria Dei Servi Church in Bologna. Applied Mechanics and Materials, 2016, 847, 354-360.	0.2	0
88	Corrigendum to "Multi-performance seismic design through an enhanced first-storey isolation system―[Eng. Struct. 59 (2014) 495–506]. Engineering Structures, 2016, 122, 349.	5.3	0
89	Editorial: Innovative Methodologies for Resilient Buildings and Cities. Frontiers in Built Environment, 2019, 5, .	2.3	0
90	Reducing Seismic out of Plane Vulnerability of Masonry Church Facì§ades through Optimization of Capacity Spectrum by Tie Rods. Key Engineering Materials, 2019, 817, 325-333.	0.4	0

#	Article	IF	CITATIONS
91	Use of Crescent Shaped Braces for Controlled Seismic Design of Ductile Structures. Journal of Civil Engineering and Architecture, 2011, 5, .	0.1	0
92	EFFECT OF THE GRAIN SLIDING ON THE SEISMIC BEHAVIOR OF CIRCULAR SILOS: A THEORETICAL FORMULATION. Proceedings of International Structural Engineering and Construction, 2015, 2, .	0.1	0
93	Application of the Equivalent Static Analysis procedure for the seismic design of buildings with added viscous dampers. , 2016, , .		0
94	Experimental Assessment of a new steel hysteretic device: Crescent Shaped Brace., 2016,,.		0
95	Maximum Corner Displacement Amplifications for Inelastic One-Storey In-Plan Asymmetric Systems Under Seismic Excitation. Geotechnical, Geological and Earthquake Engineering, 2016, , 243-254.	0.2	O
96	IDENTIFICATION THROUGH SEISMOMETRIC MEASUREMENTS OF TRANSIENTS PROPAGATING INSIDE THE ASINELLI AND GARISENDA TOWERS (BOLOGNA, ITALY), IMPLICATION ON STRUCTURAL MODELING AND STATE OF HEALTH MONITORING. , 2019 , , .		0
97	THE APPLICATION OF WELD-BASED ADDITIVE MANUFACTURING STEEL TO STRUCTURAL ENGINEERING. Proceedings of International Structural Engineering and Construction, 2019, 6, .	0.1	O
98	SEISMIC DESIGN OF FRAME STRUCTURES EQUIPPED WITH INNOVATIVE HYSTERETIC DISSIPATIVE DEVICES. Proceedings of International Structural Engineering and Construction, 2019, 6, .	0.1	0