
Ricardo AarÃ³n ChÃ;vez Montes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542155/publications.pdf Version: 2024-02-01

Ricardo AarÃ³n ChÃivez

#	Article	IF	CITATIONS
1	Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 2014, 5, 3722.	12.8	224
2	Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of rootâ€external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214, 632-643.	7.3	210
3	Inside the gynoecium: at the carpel margin. Trends in Plant Science, 2013, 18, 644-655.	8.8	124
4	The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics, 2017, 13, e1006726.	3.5	98
5	Cytochrome P450 <i>CYP78A9</i> Is Involved in Arabidopsis Reproductive Development Â. Plant Physiology, 2013, 162, 779-799.	4.8	82
6	Cell Wall Modifications in Arabidopsis Plants with Altered <i>α</i> - <scp>l</scp> -Arabinofuranosidase Activity Â. Plant Physiology, 2008, 147, 63-77.	4.8	63
7	The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 2015, 6, 341.	3.6	51
8	Entering the Next Dimension: Plant Genomes in 3D. Trends in Plant Science, 2018, 23, 598-612.	8.8	44
9	Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 437-451.	5.7	40
10	The plant MBF1 protein family: a bridge between stress and transcription. Journal of Experimental Botany, 2020, 71, 1782-1791.	4.8	37
11	ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biology, 2014, 14, 97.	3.6	35
12	Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 2015, 3-4, 3-12.	4.7	34
13	Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
14	Selection of Reference Genes for Quantitative Real-Time RT-PCR Studies in Tomato Fruit of the Genotype MT-Rg1. Frontiers in Plant Science, 2016, 7, 1386.	3.6	32
15	Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño. PeerJ, 2017, 5, e3737.	2.0	32
16	New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development (Cambridge), 2019, 146, .	2.5	22
17	A comparative genomics examination of desiccation tolerance and sensitivity in two sister grass species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
18	Laser-Assisted Microdissection to Study Global Transcriptional Changes During Plant Embryogenesis.		3

, 2016, , 495-506.

#	Article	IF	CITATIONS
19	Effects of the Developmental Regulator BOLITA on the Plant Metabolome. Genes, 2021, 12, 995.	2.4	3
20	Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data. Genomics, 2021, 113, 88-103.	2.9	2