Myriam Heuertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5421503/publications.pdf

Version: 2024-02-01

		136950	98798
78	5,109	32	67
papers	citations	h-index	g-index
82	82	82	7967
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Polygenic adaptation and negative selection across traits, years and environments in a longâ€lived plant species (<i>Pinus pinaster</i> Ait., Pinaceae). Molecular Ecology, 2022, 31, 2089-2105.	3.9	21
2	Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecology and Evolution, 2022, 12, e8540.	1.9	9
3	Ancient and historical DNA in conservation policy. Trends in Ecology and Evolution, 2022, 37, 420-429.	8.7	31
4	Seasonal variation of leaf thickness: An overlooked component of functional trait variability. Plant Biology, 2022, 24, 458-463.	3.8	6
5	Selection in space and time: Individual tree growth is adapted to tropical forest gap dynamics. Molecular Ecology, 2022, , .	3.9	6
6	Spatial genetic structure and mating system in forest tree populations from seasonally dry tropical forests: a review. Tree Genetics and Genomes, 2022, 18, 1.	1.6	5
7	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
8	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	4.1	32
9	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	1.5	18
10	Evidence of local adaptation despite strong drift in a Neotropical patchily distributed bromeliad. Heredity, 2021, 127, 203-218.	2.6	3
11	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	4.9	96
12	Topography shapes the local coexistence of tree species within species complexes of Neotropical forests. Oecologia, 2021, 196, 389-398.	2.0	9
13	Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes. Molecular Ecology, 2021, 30, 5080-5093.	3.9	16
14	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
15	Genetic Distinctiveness Highlights the Conservation Value of a Sicilian Manna Ash Germplasm Collection Assigned to Fraxinus angustifolia (Oleaceae). Plants, 2020, 9, 1035.	3.5	7
16	Topography consistently drives intra―and interâ€specific leaf trait variation within tree species complexes in a Neotropical forest. Oikos, 2020, 129, 1521-1530.	2.7	28
17	Population genomics of the widespread African savannah treesAfzelia africanaandAfzelia quanzensisreveals no significant past fragmentation of their distribution ranges. American Journal of Botany, 2020, 107, 498-509.	1.7	6
18	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	12.6	132

#	Article	IF	Citations
19	Miocene Diversification in the Savannahs Precedes Tetraploid Rainforest Radiation in the African Tree Genus Afzelia (Detarioideae, Fabaceae). Frontiers in Plant Science, 2020, 11, 798.	3.6	5
20	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	4.1	285
21	The protected tree Dimorphandra wilsonii (Fabaceae) is a population of inter-specific hybrids: recommendations for conservation in the Brazilian Cerrado/Atlantic Forest ecotone. Annals of Botany, 2020, 126, 191-203.	2.9	9
22	Plastome phylogeography in two African rain forest legume trees reveals that Dahomey Gap populations originate from the Cameroon volcanic line. Molecular Phylogenetics and Evolution, 2020, 150, 106854.	2.7	13
23	The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana. Plant Ecology and Evolution, 2020, 153, 67-81.	0.7	12
24	Dispersal and local persistence shape the genetic structure of a widespread Neotropical plant species with a patchy distribution. Annals of Botany, 2019, 124, 499-512.	2.9	10
25	Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data. Molecular Phylogenetics and Evolution, 2019, 135, 98-104.	2.7	25
26	Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var. cebil (Griseb.) Altschul (Fabaceae). Annals of Forest Science, 2019, 76, 1.	2.0	13
27	Le chêne faginé (Quercus faginea, Fagaceae) en AlgérieÂ: potentiel germinatif et variabilité morphologique des glands et des semis. Plant Ecology and Evolution, 2019, 152, 437-449.	0.7	4
28	A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Annals of Botany, 2018, 122, 1005-1017.	2.9	21
29	Testing the hypothesis of low genetic diversity and population structure in narrow endemic species: the endangered Antirrhinum charidemi (Plantaginaceae). Botanical Journal of the Linnean Society, 2017, 183, 260-270.	1.6	35
30	Is homoploid hybrid speciation that rare? An empiricist's view. Heredity, 2017, 118, 513-516.	2.6	129
31	Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Molecular Ecology, 2017, 26, 706-717.	3.9	85
32	Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. Annals of Botany, 2017, 119, 1061-1072.	2.9	27
33	The evolutionary history of central African rain forest plants: phylogeographical insights from sister species in the climber genus <i>Haumania</i> (Marantaceae). Journal of Biogeography, 2017, 44, 308-321.	3.0	11
34	Development of genomic tools in a widespread tropical tree, <i>Symphonia globulifera</i> L.f.: a new lowâ€coverage draft genome, <scp>SNP</scp> and <scp>SSR</scp> markers. Molecular Ecology Resources, 2017, 17, 614-630.	4.8	9
35	Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS ONE, 2017, 12, e0182515.	2.5	23
36	Species-specific phylogeographical patterns and Pleistocene east-west divergence in <i>Annona</i> (Annonaceae) in the Brazilian Cerrado. Botanical Journal of the Linnean Society, 2016, 181, 21-36.	1.6	33

#	Article	IF	CITATIONS
37	Climatic drivers of leaf traits and genetic divergence in the tree <i>Annona crassiflora</i> spatial survey in the Brazilian savannas. Global Change Biology, 2016, 22, 3789-3803.	9.5	21
38	Biogeography and evolution of seeder and resprouter forms of Erica coccinea (Ericaceae) in the fire-prone Cape fynbos. Plant Ecology, 2016, 217, 751-761.	1.6	7
39	Causes and consequences of large clonal assemblies in a poplar hybrid zone. Molecular Ecology, 2016, 25, 5330-5344.	3.9	7
40	Forest tree genomics: 10 achievements from the past 10Âyears and future prospects. Annals of Forest Science, 2016, 73, 77-103.	2.0	91
41	Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L PLoS ONE, 2016, 11, e0167104.	2.5	15
42	Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Frontiers in Genetics, 2015, 6, 154.	2.3	90
43	Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (<i>Pinus pinaster</i> Aiton,) Tj ETQq1 1 0.7843	14 rgBT /0 2.9	Overlock 10 78
44	Patterns of Nucleotide Diversity at Photoperiod Related Genes in Norway Spruce [Picea abies (L.) Karst.]. PLoS ONE, 2014, 9, e95306.	2.5	20
45	<i>InÂsitu</i> genetic association for serotiny, a fireâ€related trait, in Mediterranean maritime pine (<i>Pinus pinaster</i>). New Phytologist, 2014, 201, 230-241.	7.3	69
46	Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover. Molecular Ecology, 2014, 23, 2299-2312.	3.9	35
47	Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in <i>Restio capensis</i> (Restionaceae). Molecular Ecology, 2014, 23, 4373-4386.	3.9	45
48	Comparative Phylogeography in Rainforest Trees from Lower Guinea, Africa. PLoS ONE, 2014, 9, e84307.	2.5	36
49	Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus - Geoscience, 2013, 345, 284-296.	1.2	94
50	The ancient tropical rainforest tree Symphonia globulifera L. f. (Clusiaceae) was not restricted to postulated Pleistocene refugia in Atlantic Equatorial Africa. Heredity, 2013, 111, 66-76.	2.6	38
51	Within-Population Genetic Structure in Beech (Fagus sylvatica L.) Stands Characterized by Different Disturbance Histories: Does Forest Management Simplify Population Substructure?. PLoS ONE, 2013, 8, e73391.	2.5	28
52	Characterization of new microsatellite loci isolated from <i>Santiria trimera</i> (Burseraceae). American Journal of Botany, 2012, 99, e334-6.	1.7	3
53	The Atlantic–Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars. Molecular Ecology, 2012, 21, 3593-3609.	3.9	21
54	Diversity gradients and phylogeographic patterns in <i>Santiria trimera</i> (Burseraceae), a widespread African tree typical of mature rainforests. American Journal of Botany, 2011, 98, 254-264.	1.7	25

#	Article	IF	Citations
55	Isolation of SSR markers for two African tropical tree species, <i>Erythrophleum suaveolens</i> and <i>E. ivorense</i> (Caesalpinioideae). American Journal of Botany, 2011, 98, e106-8.	1.7	9
56	A parentage study of closely related Ukrainian wine grape varieties using microsatellite markers. Cytology and Genetics, 2010, 44, 95-102.	0.5	5
57	Chloroplast DNA Polymorphism and Phylogeography of a Central African Tree Species Widespread in Mature Rainforests: Greenwayodendron suaveolens (Annonaceae). Tropical Plant Biology, 2010, 3, 4-13.	1.9	31
58	Forest refugia revisited: nSSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moraceae). Molecular Ecology, 2010, 19, 4462-4477.	3.9	47
59	CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology, 2010, 19, 5469-5483.	3.9	38
60	Geography determines genetic relationships between species of mountain pine (<i>Pinus mugo</i>) Tj ETQq0 0 0	OrgBT/O	verlock 10 Tf
61	A combined analysis of morphological traits, chloroplast and nuclear DNA sequences within Santiria trimera (Burseraceae) suggests several species following the Biological Species Concept. Plant Ecology and Evolution, 2010, 143, 160-169.	0.7	22
62	Spatial genetic structure in <i>Milicia excelsa</i> (Moraceae) indicates extensive gene dispersal in a lowâ€density windâ€pollinated tropical tree. Molecular Ecology, 2009, 18, 4398-4408.	3.9	45
63	Spatial genetic structure in continuous and fragmented populations of <i>Pinus pinaster</i> Aiton. Molecular Ecology, 2009, 18, 4564-4576.	3.9	69
64	Spatiotemporal mating pattern variation in a windâ€pollinated Mediterranean shrub. Molecular Ecology, 2009, 18, 5195-5206.	3.9	14
65	Admixture, one-source colonization or long-term persistence of maritime pine in the Castilian Plateau? [Spain]. Insights from nuclear microsatellite markers. Forest Systems, 2009, 18, 3.	0.3	1
66	THE COMPLEX BIOGEOGRAPHIC HISTORY OF A WIDESPREAD TROPICAL TREE SPECIES. Evolution; International Journal of Organic Evolution, 2008, 62, 2760-2774.	2.3	82
67	Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity, 2008, 101, 285-296.	2.6	51
68	Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): roles of hybridization and life history traits. Molecular Ecology, 2006, 15, 2131-2140.	3.9	131
69	Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus) Tj ETQq $1\ 1\ 0.7843$	14.rgBT /	Overlock 10
70	Multilocus Patterns of Nucleotide Diversity, Linkage Disequilibrium and Demographic History of Norway Spruce [Picea abies (L.) Karst]. Genetics, 2006, 174, 2095-2105.	2.9	241
71	NUCLEAR MICROSATELLITES REVEAL CONTRASTING PATTERNS OF GENETIC STRUCTURE BETWEEN WESTERN AND SOUTHEASTERN EUROPEAN POPULATIONS OF THE COMMON ASH (FRAXINUS EXCELSIOR L). Evolution; International Journal of Organic Evolution, 2004, 58, 976.	2.3	9
72	Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Molecular Ecology, 2004, 13, 3437-3452.	3.9	248

#	Article	IF	CITATION
73	NUCLEAR MICROSATELLITES REVEAL CONTRASTING PATTERNS OF GENETIC STRUCTURE BETWEEN WESTERN AND SOUTHEASTERN EUROPEAN POPULATIONS OF THE COMMON ASH (FRAXINUS EXCELSIOR L.). Evolution; International Journal of Organic Evolution, 2004, 58, 976-988.	2.3	136
74	In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica, 2004, 138, 205-212.	1.2	37
75	Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Molecular Ecology, 2003, 12, 2483-2495.	3.9	147
76	Microsatellite Allele Sizes: A Simple Test to Assess Their Significance on Genetic Differentiation. Genetics, 2003, 163, 1467-1482.	2.9	428
77	Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Molecular Ecology, 2001, 10, 1615-1623.	3.9	66
78	Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theoretical and Applied Genetics, 2000, 100, 918-925.	3.6	119