Alan Robock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420128/publications.pdf

Version: 2024-02-01

6250 9090 23,971 265 80 144 citations h-index g-index papers 299 299 299 14911 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Future Geoengineering Scenarios: Balancing Policy Relevance and Scientific Significance. Bulletin of the American Meteorological Society, 2022, 103, E817-E820.	1.7	2
2	Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geoscientific Model Development, 2022, 15, 2265-2292.	1.3	22
3	Economic incentives modify agricultural impacts of nuclear war. Environmental Research Letters, 2022, 17, 054003.	2.2	2
4	Solar geoengineering could redistribute malaria risk in developing countries. Nature Communications, 2022, 13, 2150.	5.8	17
5	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	9.0	O
6	Volcanic effects on climate: recent advances and future avenues. Bulletin of Volcanology, 2022, 84, .	1.1	32
7	Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nature Communications, 2022, 13, .	5. 8	27
8	A New Ocean State After Nuclear War. AGU Advances, 2022, 3, .	2.3	14
9	North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management. Atmospheric Chemistry and Physics, 2021, 21, 1287-1304.	1.9	25
10	Nuclear Ni $\tilde{A}\pm$ o response observed in simulations of nuclear war scenarios. Communications Earth & Environment, 2021, 2, .	2.6	15
11	Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble. Atmospheric Chemistry and Physics, 2021, 21, 3317-3343.	1.9	33
12	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	9.0	0
13	Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4231-4247.	1.9	22
14	Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3. 3	46
15	Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics. Atmospheric Chemistry and Physics, 2021, 21, 6985-6997.	1.9	28
16	The Influence of Stratospheric Soot and Sulfate Aerosols on the Northern Hemisphere Wintertime Atmospheric Circulation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034513.	1.2	15
17	Extreme Ozone Loss Following Nuclear War Results in Enhanced Surface Ultraviolet Radiation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035079.	1.2	13
18	The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 2021, 25, 5749-5804.	1.9	116

#	Article	IF	CITATIONS
19	Volcanic climate impacts can act as ultimate and proximate causes of Chinese dynastic collapse. Communications Earth & Environment, 2021, 2, .	2.6	18
20	Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India). Climatic Change, 2020, 162, 1323-1343.	1.7	6
21	Marine wild-capture fisheries after nuclear war. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29748-29758.	3.3	18
22	Comment on "No consistent ENSO response to volcanic forcing over the last millennium― Science, 2020, 369, .	6.0	11
23	Making Your Own Luck: A Meaningful Career From Being Open to Opportunities. Perspectives of Earth and Space Scientists, 2020, 1, e2020CN000133.	0.2	0
24	A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7071-7081.	3.3	63
25	The Potential Impact of Nuclear Conflict on Ocean Acidification. Geophysical Research Letters, 2020, 47, e2019GL086246.	1.5	7
26	Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth System Dynamics, 2020, 11, 579-601.	2.7	50
27	Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume. Science, 2019, 365, 587-590.	6.0	159
28	Nuclear Winter Responses to Nuclear War Between the United States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space Studies ModelE. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8522-8543.	1,2	57
29	How an India-Pakistan nuclear war could start—and have global consequences. Bulletin of the Atomic Scientists, 2019, 75, 273-279.	0.2	10
30	100 Years of Progress in Understanding the Stratosphere and Mesosphere. Meteorological Monographs, 2019, 59, 27.1-27.62.	5.0	37
31	Rapidly expanding nuclear arsenals in Pakistan and India portend regional and global catastrophe. Science Advances, 2019, 5, eaay5478.	4.7	43
32	Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6770-6790.	1.2	32
33	Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6750-6769.	1,2	12
34	Thank You to Our 2018 Peer Reviewers. Reviews of Geophysics, 2019, 57, 4-4.	9.0	0
35	Comment on "Climate Impact of a Regional Nuclear Weapon Exchange: An Improved Assessment Based on Detailed Source Calculations―by Reisner et al Journal of Geophysical Research D: Atmospheres, 2019, 124, 12953-12958.	1.2	10
36	Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecology and Evolution, 2018, 2, 475-482.	3.4	89

#	Article	IF	CITATIONS
37	Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt.ÂTambora. Atmospheric Chemistry and Physics, 2018, 18, 2307-2328.	1.9	41
38	How well does the European Centre for Mediumâ€Range Weather Forecasting Interim Reanalysis represent the surface air temperature in Cuban weather stations?. International Journal of Climatology, 2018, 38, 1216-1233.	1.5	4
39	Impact of Volcanic Eruptions on Decadal to Centennial Fluctuations of Arctic Sea Ice Extent during the Last Millennium and on Initiation of the Little Ice Age. Journal of Climate, 2018, 31, 2145-2167.	1.2	52
40	Volcanoes: Role in Climate., 2018,,.		2
41	Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. , 2018, 14, 572-603.		75
42	Appreciation of Peer Reviewers for 2017. Reviews of Geophysics, 2018, 56, 566-566.	9.0	0
43	The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 13097-13113.	1.9	19
44	Did Smoke From City Fires in World War II Cause Global Cooling?. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,314.	1.2	3
45	The Sky in Edvard Munch's The Scream. Bulletin of the American Meteorological Society, 2018, 99, 1377-1390.	1.7	5
46	Ecological, Agricultural, and Health Impacts of Solar Geoengineering., 2018, , 291-303.		3
46	Ecological, Agricultural, and Health Impacts of Solar Geoengineering. , 2018, , 291-303. LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275.	1.7	3
	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the	1.7 5.8	
47	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature		22
47	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778. Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service	5.8	132
48	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778. Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to ⟨i⟩Reviews of Geophysics⟨ i⟩. Reviews of Geophysics, 2017, 55, 860-863. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over	5.8 9.0	132 1
47 48 49 50	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778. Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to ⟨i⟩Reviews of Geophysics⟨ i⟩. Reviews of Geophysics, 2017, 55, 860-863. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7971-7989. Asia Treads the Nuclear Path, Unaware That Self-Assured Destruction Would Result from Nuclear	5.8 9.0 1.2	132 1 43
47 48 49 50	LALINET: The First Latin American–Born Regional Atmospheric Observational Network. Bulletin of the American Meteorological Society, 2017, 98, 1255-1275. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 2017, 8, 778. Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service to ⟨i⟩Reviews of Geophysics⟨ i⟩. Reviews of Geophysics, 2017, 55, 860-863. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7971-7989. Asia Treads the Nuclear Path, Unaware That Self-Assured Destruction Would Result from Nuclear War. Journal of Asian Studies, 2017, 76, 437-456. The G4Foam Experiment: global climate impacts of regional ocean albedo modification. Atmospheric	5.8 9.0 1.2	132 1 43

#	Article	IF	Citations
55	The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geoscientific Model Development, 2016, 9, 2701-2719.	1.3	138
56	Modelled and observed sea surface temperature trends for the Caribbean and Antilles. International Journal of Climatology, 2016, 36, 1873-1886.	1.5	18
57	Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 569-589.	3.6	105
58	Albedo enhancement by stratospheric sulfur injections: More research needed. Earth's Future, 2016, 4, 644-648.	2.4	26
59	Appreciation of peer reviewers for 2015. Reviews of Geophysics, 2016, 54, 277-277.	9.0	0
60	Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmospheric Chemistry and Physics, 2016, 16, 1479-1489.	1.9	66
61	Winter warming and summer monsoon reduction after volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Geophysical Research Letters, 2016, 43, 10,920.	1.5	50
62	New Paths in Geoengineering. Eos, 2016, 97, .	0.1	1
63	Decadal reduction of Chinese agriculture after a regional nuclear war. Earth's Future, 2015, 3, 37-48.	2.4	28
64	Stratospheric geoengineering impacts on El Ni $\tilde{A}\pm o/S$ outhern Oscillation. Atmospheric Chemistry and Physics, 2015, 15, 11949-11966.	1.9	21
65	Cooperation on GPS Meteorology between the United States and Cuba. Bulletin of the American Meteorological Society, 2015, 96, 1079-1088.	1.7	7
66	The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geoscientific Model Development, 2015, 8, 3379-3392.	1.3	140
67	A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models. Geoscientific Model Development, 2015, 8, 43-49.	1.3	51
68	Climatic Impacts of Volcanic Eruptions. , 2015, , 935-942.		12
69	Resilience to global food supply catastrophes. Environment Systems and Decisions, 2015, 35, 301-313.	1.9	44
70	Stratospheric aerosol geoengineering. AIP Conference Proceedings, 2015, , .	0.3	10
71	Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology, 2015, 21, 1581-1589.	4.2	84
72	Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7946-7962.	1.2	11

#	Article	IF	Citations
73	Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario. Journal of Geophysical Research D: Atmospheres, 2014, 119, 567-583.	1.2	45
74	Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2014, 119, 8695-8711.	1.2	53
7 5	A multi-model assessment of regional climate disparities caused by solar geoengineering. Environmental Research Letters, 2014, 9, 074013.	2.2	101
76	Partnering with Cuba: Weather extremes. Science, 2014, 345, 278-278.	6.0	2
77	Environmental consequences of nuclear war. AIP Conference Proceedings, 2014, , .	0.3	16
78	Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict. Earth's Future, 2014, 2, 161-176.	2.4	74
79	Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9338-9358.	1.2	33
80	Reply to comment by Coleâ€Dai et al. on "Climatic impact of the longâ€lasting Laki eruption: Inapplicability of massâ€independent sulfur isotope composition measurementsâ€i Journal of Geophysical Research D: Atmospheres, 2014, 119, 6636-6637.	1.2	0
81	Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1308-1321.	1.2	36
82	Ocean response to volcanic eruptions in <scp>C</scp> oupled <scp>M</scp> odel <scp>I</scp> ntercomparison <scp>P</scp> roject 5 simulations. Journal of Geophysical Research: Oceans, 2014, 119, 5622-5637.	1.0	90
83	Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2014, 119, 2629-2653.	1.2	151
84	A multimodel examination of climate extremes in an idealized geoengineering experiment. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3900-3923.	1.2	75
85	Reply to Comment on "The Latest on Volcanic Eruptions and Climate― Eos, 2014, 95, 353-353.	0.1	2
86	Future Directions in Simulating Solar Geoengineering. Eos, 2014, 95, 280-280.	0.1	4
87	Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO ₂ . Journal of Geophysical Research D: Atmospheres, 2014, 119, 5226-5239.	1.2	19
88	Stratospheric Aerosol Geoengineering. Issues in Environmental Science and Technology, 2014, , 162-185.	0.4	32
89	Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 8320-8332.	1.2	226
90	An overview of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,103.	1.2	45

#	Article	IF	CITATIONS
91	Studying geoengineering with natural and anthropogenic analogs. Climatic Change, 2013, 121, 445-458.	1.7	76
92	Robust Results From Climate Model Simulations of Geoengineering. Eos, 2013, 94, 292-292.	0.1	7
93	Impacts of a nuclear war in South Asia on rice production in Mainland China. Climatic Change, 2013, 116, 357-372.	1.7	37
94	Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States. Climatic Change, 2013, 116, 373-387.	1.7	33
95	The Latest on Volcanic Eruptions and Climate. Eos, 2013, 94, 305-306.	0.1	17
96	Response to Comments on "Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport". Science, 2013, 339, 647-647.	6.0	29
97	Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): Experimental design and preliminary results. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,175.	1.2	37
98	The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 9743-9752.	1.2	129
99	Baffin Island snow extent sensitivity: Insights from a regional climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3506-3519.	1.2	4
100	The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.	1.2	202
101	Northern Hemispheric cryosphere response to volcanic eruptions in the Paleoclimate Modeling Intercomparison Project 3 last millennium simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,359.	1.2	15
102	An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,087.	1.2	63
103	Self-assured destruction: The climate impacts of nuclear war. Bulletin of the Atomic Scientists, 2012, 68, 66-74.	0.2	42
104	Will Geoengineering With Solar Radiation Management Ever Be Used?. Ethics, Policy and Environment, 2012, 15, 202-205.	0.8	14
105	Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. Journal of Geophysical Research, 2012, 117, .	3.3	71
106	Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection. Journal of Geophysical Research, 2012, 117, .	3.3	32
107	Volcanism and the atmosphere. Eos, 2012, 93, 511-514.	0.1	1
108	Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. Journal of Geophysical Research, 2012, 117, .	3.3	231

#	Article	IF	CITATIONS
109	Climatic impact of the longâ€lasting 1783 Laki eruption: Inapplicability of massâ€independent sulfur isotopic composition measurements. Journal of Geophysical Research, 2012, 117, .	3.3	32
110	Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport. Science, 2012, 337, 78-81.	6.0	208
111	Progress in climate model simulations of geoengineering. Eos, 2012, 93, 340-340.	0.1	5
112	Climate effects of high-latitude volcanic eruptions: Role of the time of year. Journal of Geophysical Research, $2011,116,.$	3.3	88
113	Simulation and observations of stratospheric aerosols from the 2009 Sarychev volcanic eruption. Journal of Geophysical Research, 2011, 116, .	3.3	45
114	A New International Network for in Situ Soil Moisture Data. Eos, 2011, 92, 141-142.	0.1	54
115	Standardizing experiments in geoengineering. Eos, 2011, 92, 197-197.	0.1	8
116	The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences, 2011, 15, 1675-1698.	1.9	864
117	Modelling land cover change impact on the summer climate of the Marmara Region, Turkey. International Journal of Global Warming, 2011, 3, 194.	0.2	33
118	Nuclear winter is a real and present danger. Nature, 2011, 473, 275-276.	13.7	11
119	Bubble, bubble, toil and trouble. Climatic Change, 2011, 105, 383-385.	1.7	15
120	The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters, 2011, 12, 162-167.	0.8	314
121	Geoengineering by stratospheric SO ₂ injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmospheric Chemistry and Physics, 2010, 10, 5999-6006.	1.9	89
122	Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: A synthesis of observed streamflow changes. Journal of Hydrology, 2010, 390, 222-244.	2.3	101
123	Impacts of land cover data quality on regional climate simulations. International Journal of Climatology, 2010, 30, 1942-1953.	1.5	108
124	Nuclear winter. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 418-427.	3.6	24
125	Local Nuclear War, Global Suffering. Scientific American, 2010, 302, 74-81.	1.0	71
126	A Test for Geoengineering?. Science, 2010, 327, 530-531.	6.0	115

#	Article	IF	CITATIONS
127	Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions. Journal of Geophysical Research, 2010, 115 , .	3.3	39
128	Parentheses Are (Are Not) for References and Clarification (Saving Space). Eos, 2010, 91, 419.	0.1	0
129	New START, Eyjafjallajökull, and Nuclear Winter. Eos, 2010, 91, 444-445.	0.1	1
130	Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. Journal of Geophysical Research, 2010, 115, .	3.3	214
131	Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols― Journal of Geophysical Research, 2010, 115, .	3.3	4
132	Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 2010, 29, 1679-1715.	1.4	226
133	Benefits, risks, and costs of stratospheric geoengineering. Geophysical Research Letters, 2009, 36, .	1.5	275
134	Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research, 2009, 114 , .	3.3	74
135	Correction to "Volcanic forcing of climate over the past 1500 years: An improved ice core–based index for climate models― Journal of Geophysical Research, 2009, 114, .	3.3	15
136	Did the Toba volcanic eruption of $\hat{a}^4/474$ ka B.P. produce widespread glaciation?. Journal of Geophysical Research, 2009, 114, .	3.3	136
137	Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on coupled landâ€atmosphere variability. Journal of Geophysical Research, 2008, 113, .	3.3	125
138	20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 2008, 64, 14-18.	0.2	159
139	Regional climate responses to geoengineering with tropical and Arctic SO $<$ sub $>$ 2 $<$ /sub $>$ injections. Journal of Geophysical Research, 2008, 113, .	3.3	339
140	Volcanic forcing of climate over the past 1500 years: An improved ice coreâ€based index for climate models. Journal of Geophysical Research, 2008, 113, .	3.3	574
141	20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 2008, 64, 14-59.	0.2	179
142	Whither Geoengineering?. Science, 2008, 320, 1166-1167.	6.0	48
143	An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4007-4037.	1.6	251
144	Environmental consequences of nuclear war. Physics Today, 2008, 61, 37-42.	0.3	63

#	Article	IF	Citations
145	Consequences of Regional-Scale Nuclear Conflicts. Science, 2007, 315, 1224-1225.	6.0	51
146	Nuclear power challenges and alternatives. Physics Today, 2007, 60, 16-16.	0.3	0
147	Nuclear power's costs and perils. Physics Today, 2007, 60, 14-14.	0.3	0
148	Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atmospheric Chemistry and Physics, 2007, 7, 1973-2002.	1.9	82
149	Climatic consequences of regional nuclear conflicts. Atmospheric Chemistry and Physics, 2007, 7, 2003-2012.	1.9	124
150	Evaluation of Intergovernmental Panel on Climate Change Fourth Assessment soil moisture simulations for the second half of the twentieth century. Journal of Geophysical Research, 2007, 112, .	3.3	40
151	Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition. Journal of Geophysical Research, 2007, 112, .	3.3	72
152	Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. Journal of Geophysical Research, 2007, 112 , .	3.3	227
153	Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. Journal of Geophysical Research, 2007, 112, .	3.3	164
154	Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences. Journal of Geophysical Research, 2007, 112, .	3.3	120
155	The Continuing Environmental Threat of Nuclear Weapons: Integrated Policy Responses. Eos, 2007, 88, 228.	0.1	4
156	Southern Hemisphere atmospheric circulation effects of the 1991 Mount Pinatubo eruption. Geophysical Research Letters, 2007, 34, .	1.5	49
157	Correction to "Volcanic eruptions and climate― Reviews of Geophysics, 2007, 45, .	9.0	11
158	Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. Journal of Geophysical Research, 2006, 111, .	3.3	199
159	Temperature trends at the surface and in the troposphere. Journal of Geophysical Research, 2006, 111, .	3.3	56
160	The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. Journal of Geophysical Research, 2006, 111, .	3.3	91
161	Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption. Journal of Geophysical Research, 2006, 111, .	3.3	112
162	Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. Journal of Geophysical Research, 2006, 111, .	3.3	397

#	Article	IF	Citations
163	Solar dimming and CO2effects on soil moisture trends. Geophysical Research Letters, 2006, 33, .	1.5	41
164	High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	144
165	Regional Climate Simulations over North America: Interaction of Local Processes with Improved Large-Scale Flow. Journal of Climate, 2005, 18, 1227-1246.	1.2	135
166	CULTURE: Bob Dylan and Weather Imagery. Bulletin of the American Meteorological Society, 2005, 86, 483-487.	1.7	5
167	External Funding of Atmospheric Science Programs in the United States: More Than the Cost of a New Professor. Bulletin of the American Meteorological Society, 2005, 86, 337-340.	1.7	0
168	Evaluation of Reanalysis Soil Moisture Simulations Using Updated Chinese Soil Moisture Observations. Journal of Hydrometeorology, 2005, 6, 180-193.	0.7	106
169	Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet). Geophysical Research Letters, 2005, 32, .	1.5	53
170	Cooling following large volcanic eruptions corrected for the effect of diffuse radiation on tree rings. Geophysical Research Letters, 2005, 32, .	1.5	45
171	Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements. Journal of Geophysical Research, 2005, 110, .	3.3	99
172	Climatic response to high-latitude volcanic eruptions. Journal of Geophysical Research, 2005, 110 , .	3.3	157
173	Comment on "Climate forcing by the volcanic eruption of Mount Pinatubo―by David H. Douglass and Robert S. Knox. Geophysical Research Letters, 2005, 32, .	1.5	8
174	Emissions from volcanoes. Advances in Global Change Research, 2004, , 269-303.	1.6	57
175	Analysis of diurnal and seasonal cycles and trends in climatic records with arbitrary observation times. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	19
176	Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. Journal of Geophysical Research, 2004, 109, .	3.3	141
177	Arctic oscillation response to the 1991 Pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial oscillation. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	71
178	The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research, 2004, 109, .	3.3	985
179	Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	279
180	Climatic impact of volcanic emissions. Geophysical Monograph Series, 2004, , 125-134.	0.1	12

#	Article	IF	Citations
181	Land surface conditions over Eurasia and Indian summer monsoon rainfall. Journal of Geophysical Research, 2003, 108, .	3.3	127
182	Realâ€ŧime and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 2003, 108, .	3.3	357
183	Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. Journal of Geophysical Research, 2003, 108, .	3.3	157
184	Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains. Journal of Geophysical Research, 2003, 108, .	3.3	136
185	Surface radiation budgets in support of the GEWEX Continentalâ€Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 2003, 108, .	3.3	196
186	Land surface model spinâ€up behavior in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research, 2003, 108, .	3.3	96
187	Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption. Journal of Geophysical Research, 2003, 108, .	3.3	25
188	Preface to special section: GEWEX Continental-Scale International Project (GCIP)-3. Journal of Geophysical Research, 2003, 108, .	3.3	4
189	The Campanian Ignimbrite Eruption, Heinrich Event 4, and palaeolithic change in Europe: A high-resolution investigation. Geophysical Monograph Series, 2003, , 301-325.	0.1	62
190	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	0.7	150
191	Tropospheric volcanic aerosol. Geophysical Monograph Series, 2003, , 189-212.	0.1	121
192	Petrological and volcanological constraints on volcanic sulfur emissions to the atmosphere. Geophysical Monograph Series, 2003, , 11-40.	0.1	37
193	The number and magnitude of large explosive volcanic eruptions between 904 and 1865 A.D.: Quantitative evidence from a new South Pole ice core. Geophysical Monograph Series, 2003, , 165-176.	0.1	30
194	Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere. Geophysical Monograph Series, 2003, , 239-254.	0.1	27
195	High resolution ice core records of late Holocene volcanism: Current and future contributions from the Greenland PARCA core. Geophysical Monograph Series, 2003, , 153-164.	0.1	22
196	An automatic statistical methodology to extract pulse-like forcing factors in climatic time series: Application to volcanic events. Geophysical Monograph Series, 2003, , 177-186.	0.1	10
197	Global, long-term sulphur dioxide measurements from TOVS data: A new tool for studying explosive volcanism and climate. Geophysical Monograph Series, 2003, , 75-92.	0.1	57
198	The Laki eruption and observed dendroclimatic effects of volcanism. Geophysical Monograph Series, 2003, , 263-272.	0.1	1

#	Article	IF	Citations
199	Surface atmospheric circulation over Europe following major tropical volcanic eruptions, 1780–1995. Geophysical Monograph Series, 2003, , 273-281.	0.1	3
200	Predictions of climate following volcanic eruptions. Geophysical Monograph Series, 2003, , 283-300.	0.1	9
201	Dendroclimatological evidence for major volcanic events of the past two millennia. Geophysical Monograph Series, 2003, , 255-261.	0.1	2
202	Introduction: Mount Pinatubo as a test of climate feedback mechanisms. Geophysical Monograph Series, 2003, , 1-8.	0.1	14
203	PINATUBO ERUPTION: The Climatic Aftermath. Science, 2002, 295, 1242-1244.	6.0	116
204	Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption. Journal of Geophysical Research, 2002, 107, ACL 3-1.	3.3	35
205	Diurnal and seasonal cycles of trends of surface air temperature. Journal of Geophysical Research, 2002, 107, ACL 13-1.	3.3	20
206	Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. Journal of Geophysical Research, 2002, 107, ACL 28-1.	3.3	210
207	Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. Science, 2002, 296, 727-730.	6.0	424
208	Trends in moments of climatic indices. Geophysical Research Letters, 2002, 29, 14-1.	1.5	33
209	Analysis of seasonal cycles in climatic trends with application to satellite observations of sea ice extent. Geophysical Research Letters, 2002, 29, 24-1-24-4.	1.5	61
210	The AMS Congressional Science Fellowship Program: Why You Should Consider It. Bulletin of the American Meteorological Society, 2001, 82, 315-317.	1.7	0
211	Stratospheric Forcing Needed for Dynamical Seasonal Prediction. Bulletin of the American Meteorological Society, 2001, 82, 2189-2192.	1.7	13
212	Spatial Variation of Soil Moisture in China: Geostatistical Characterization Journal of the Meteorological Society of Japan, 2001, 79, 555-574.	0.7	36
213	Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d). Monthly Weather Review, 2000, 128, 301-321.	0.5	148
214	Temporal and spatial scales of observed soil moisture variations in the extratropics. Journal of Geophysical Research, 2000, 105, 11865-11877.	3.3	455
215	Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response. Journal of Geophysical Research, 2000, 105, 24409-24429.	3.3	80
216	Soil moisture simulations in revised AMIP models. Journal of Geophysical Research, 2000, 105, 26635-26644.	3.3	34

#	Article	IF	Citations
217	The Global Soil Moisture Data Bank. Bulletin of the American Meteorological Society, 2000, 81, 1281-1299.	1.7	719
218	Volcanic eruptions and climate. Reviews of Geophysics, 2000, 38, 191-219.	9.0	2,008
219	Title is missing!. Climatic Change, 1999, 42, 663-675.	1.7	34
220	Key results and implications from phase $1(c)$ of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 1999, 15, 673-684.	1.7	103
221	Global Warming and Northern Hemisphere Sea Ice Extent. Science, 1999, 286, 1934-1937.	6.0	345
222	Satellite remote sensing of soil moisture in Illinois, United States. Journal of Geophysical Research, 1999, 104, 4145-4168.	3.3	110
223	Optimal design of surface networks for observation of soil moisture. Journal of Geophysical Research, 1999, 104, 19743-19749.	3.3	53
224	Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research, 1999, 104, 19039-19055.	3.3	181
225	Evaluation of Global Soil Wetness Project Soil Moisture Simulations. Journal of the Meteorological Society of Japan, 1999, 77, 183-198.	0.7	118
226	Global warming in the context of the Little Ice Age. Journal of Geophysical Research, 1999, 104, 19057-19070.	3.3	123
227	Evaluation of the AMIP soil moisture simulations. Global and Planetary Change, 1998, 19, 181-208.	1.6	132
228	Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research, 1998, 103, 13837-13857.	3.3	328
229	Surface Air Temperature Simulations by AMIP General Circulation Models: Volcanic and ENSO Signals and Systematic Errors. Journal of Climate, 1998, 11, 1538-1552.	1.2	43
230	Global Warming: State of the Science. Energy and Environment, 1998, 9, 609-616.	2.7	0
231	Validation of the Snow Submodel of the Biosphere–Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data. Journal of Climate, 1997, 10, 353-373.	1.2	250
232	18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia. Monthly Weather Review, 1997, 125, 3279-3296.	0.5	58
233	Reply: (Evaluation of Land-Surface Parameterization Schemes Using Observations). Journal of Climate, 1997, 10, 377-379.	1.2	10
234	Scales of temporal and spatial variability of midlatitude soil moisture. Journal of Geophysical Research, 1996, 101, 7163-7174.	3.3	292

#	Article	IF	Citations
235	vertical patterns of free and forced climate variations. Geophysical Research Letters, 1996, 23, 1801-1804.	1.5	20
236	The volcanic record in ice cores for the past 2000 years. , 1996, , 533-546.		49
237	Use of Midlatitude Soil Moisture and Meteorological Observations to Validate Soil Moisture Simulations with Biosphere and Bucket Models. Journal of Climate, 1995, 8, 15-35.	1.2	177
238	Potential effects of global climatic change on the phenology and yield of maize in venezuela. Climatic Change, 1995, 29, 189-211.	1.7	33
239	The Volcanic Signal in Surface Temperature Observations. Journal of Climate, 1995, 8, 1086-1103.	1.2	369
240	GCM evaluation of a mechanism for El Ni \tilde{A} ±0 triggering by the El Chich \tilde{A} 3n ash cloud. Geophysical Research Letters, 1995, 22, 2369-2372.	1.5	24
241	lce cores as an index of global volcanism from 1850 to the present. Journal of Geophysical Research, 1995, 100, 11549.	3.3	130
242	Diurnal asymmetry of climatic response to increased CO2and aerosols: Forcings and feedbacks. Journal of Geophysical Research, 1995, 100, 26211.	3.3	43
243	The Volcanic Signal in Goddard Institute for Space Studies Three-Dimensional Model Simulations. Journal of Climate, 1994, 7, 44-55.	1.2	73
244	Effects of pre-industrial human activities on climate. Chemosphere, 1994, 29, 1087-1097.	4.2	5
245	Pinatubo eruption winter climate effects: model versus observations. Climate Dynamics, 1993, 9, 81-93.	1.7	176
246	Use of general circulation model output in the creation of climate change scenarios for impact analysis. Climatic Change, 1993, 23, 293-335.	1.7	79
247	Relationships between tropospheric water vapor and surface temperature as observed by radiosondes. Geophysical Research Letters, 1992, 19, 1839-1842.	1.5	87
248	Winter warming from large volcanic eruptions. Geophysical Research Letters, 1992, 19, 2405-2408.	1.5	259
249	Surface cooling due to forest fire smoke. Journal of Geophysical Research, 1991, 96, 20869-20878.	3.3	69
250	The Volcanic Contribution to Climate Change of the Past 100 Years. Developments in Atmospheric Science, 1991, , 429-443.	0.3	26
251	New models confirm nuclear winter. Bulletin of the Atomic Scientists, 1989, 45, 32-35.	0.2	9
252	Volcanoes and Climate. , 1989, , 309-314.		1

#	Article	IF	CITATIONS
253	Detection of volcanic, CO2, and ENSO signals in surface air temperature. Advances in Space Research, 1985, 5, 53-56.	1.2	25
254	Snow and ice feedbacks prolong effects of nuclear winter. Nature, 1984, 310, 667-670.	13.7	53
255	El Chinchón eruption: The dust cloud of the century. Nature, 1983, 301, 373-374.	13.7	40
256	Ice and Snow Feedbacks and the Latitudinal and Seasonal Distribution of Climate Sensitivity. Journals of the Atmospheric Sciences, 1983, 40, 986-997.	0.6	104
257	The Russian Surface Temperature Data Set. Journal of Applied Meteorology, 1982, 21, 1781-1785.	1.1	15
258	The Short-Term Influence of the Mount St. Helens Volcanic Eruption on Surface Temperature in the Northwest United States. Monthly Weather Review, 1982, 110, 614-622.	0.5	21
259	A latitudinally dependent volcanic dust veil index, and its effect on climate simulations. Journal of Volcanology and Geothermal Research, 1981, 11, 67-80.	0.8	51
260	The Seasonal Cycle of Snow Cover, Sea Ice and Surface Albedo. Monthly Weather Review, 1980, 108, 267-285.	0.5	179
261	Internally and Externally Caused Climate Change. Journals of the Atmospheric Sciences, 1978, 35, 1111-1122.	0.6	99
262	On the eddy structure of hurricanes. Quarterly Journal of the Royal Meteorological Society, 1975, 101, 657-663.	1.0	7
263	A model study of the effect of Pinatubo volcanic aerosols on stratospheric temperatures. , 0, , 152-178.		0
264	Volcanism, the atmosphere and climate through time. , 0, , 195-207.		12
265	Climatic Consequences and Agricultural Impacts of Nuclear Conflicts. , 0, , 328-340.		O