List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419737/publications.pdf Version: 2024-02-01

Ριτά Διαριάκι

#	Article	IF	CITATIONS
1	Lakes as sentinels of climate change. Limnology and Oceanography, 2009, 54, 2283-2297.	3.1	1,314
2	Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 2015, 42, 10,773.	4.0	767
3	Beyond the Plankton Ecology Group (PEG) Model: Mechanisms Driving Plankton Succession. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 429-448.	8.3	604
4	Cyanobacteria dominance: Quantifying the effects of climate change. Limnology and Oceanography, 2009, 54, 2460-2468.	3.1	331
5	Ecology under lake ice. Ecology Letters, 2017, 20, 98-111.	6.4	320
6	Climateâ€driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnology and Oceanography, 2000, 45, 1058-1066.	3.1	243
7	Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology, 2006, 12, 652-661.	9.5	225
8	Global impacts of the 1980s regime shift. Global Change Biology, 2016, 22, 682-703.	9.5	225
9	Largeâ€scale climatic signatures in lakes across Europe: a metaâ€analysis. Global Change Biology, 2007, 13, 1314-1326.	9.5	209
10	Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography, 2013, 58, 849-866.	3.1	195
11	Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biology, 1999, 41, 621-634.	2.4	161
12	Storm impacts on phytoplankton community dynamics in lakes. Global Change Biology, 2020, 26, 2756-2784.	9.5	144
13	The North Atlantic Oscillation and plankton dynamics in two European lakes two variations on a general theme. Global Change Biology, 2000, 6, 663-670.	9.5	142
14	Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biology, 2005, 50, 1639-1650.	2.4	138
15	Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnology and Oceanography, 2001, 46, 448-455.	3.1	130
16	To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia, 2012, 169, 245-256.	2.0	127
17	Environmental stability and lake zooplankton diversity – contrasting effects of chemical and thermal variability. Ecology Letters, 2010, 13, 453-463.	6.4	123
18	Tubeâ€dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecological Monographs, 2015, 85, 333-351.	5.4	122

#	Article	IF	CITATIONS
19	Meta-analysis of multidecadal biodiversity trends in Europe. Nature Communications, 2020, 11, 3486.	12.8	115
20	Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology, 2008, 53, 226-237.	2.4	111
21	Phytoplankton response to climate warming modified by trophic state. Limnology and Oceanography, 2008, 53, 1-13.	3.1	105
22	Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8089-E8095.	7.1	101
23	A global agenda for advancing freshwater biodiversity research. Ecology Letters, 2022, 25, 255-263.	6.4	95
24	Effects of Climate Warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on Thermal Conditions and Plankton Dynamics in Northern Hemispheric Lakes. Scientific World Journal, The, 2002, 2, 586-606.	2.1	94
25	A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environmental Modelling and Software, 2018, 102, 274-291.	4.5	93
26	Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 2021, 11, 521-529.	18.8	87
27	Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differenfly sized species. Journal of Plankton Research, 1993, 15, 643-658.	1.8	82
28	Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research, 1999, 21, 2175-2190.	1.8	82
29	Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Scientific Reports, 2017, 7, 10762.	3.3	73
30	Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshwater Biology, 2002, 47, 2163-2173.	2.4	70
31	Clear, crashing, turbid and back – longâ€ŧerm changes in macrophyte assemblages in a shallow lake. Freshwater Biology, 2013, 58, 2027-2036.	2.4	62
32	Nitrateâ€depleted conditions on the increase in shallow northern European lakes. Limnology and Oceanography, 2007, 52, 1346-1353.	3.1	61
33	Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area. Freshwater Biology, 1996, 36, 757-770.	2.4	54
34	Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biology, 2011, 56, 1949-1961.	2.4	53
35	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	7.8	52
36	Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data. Science of the Total Environment, 2017, 578, 417-426.	8.0	51

#	Article	IF	CITATIONS
37	Longâ€ŧerm population dynamics of dreissenid mussels (<i>Dreissena polymorpha</i> and) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
38	Exploring lake ecosystems: hierarchy responses to longâ€ŧerm change?. Global Change Biology, 2009, 15, 1104-1115.	9.5	50
39	Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140633.	2.6	50
40	Winter severity determines functional trait composition of phytoplankton in seasonally iceâ€covered lakes. Global Change Biology, 2016, 22, 284-298.	9.5	50
41	Trophic interactions between zooplankton and the microbial community in contrasting food webs: the epilimnion and deep chlorophyll maximum of a mesotrophic lake. Aquatic Microbial Ecology, 2001, 24, 83-97.	1.8	44
42	Comparative feeding ecology of Tropocyclops prasinus mexicanus (Copepoda, Cyclopoida). Journal of Plankton Research, 1992, 14, 1369-1382.	1.8	38
43	Biochemical composition of algivorous freshwater ciliates: You are not what you eat. FEMS Microbiology Ecology, 2005, 53, 393-400.	2.7	38
44	A biochemical explanation for the success of mixotrophy in the flagellate <i>Ochromonas</i> sp Limnology and Oceanography, 2007, 52, 1624-1632.	3.1	37
45	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
46	Calanoid–cyclopoid interactions: evidence from an 11â€year field study in a eutrophic lake. Freshwater Biology, 1997, 38, 315-325.	2.4	35
47	Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake. Scientific Reports, 2016, 6, 31251.	3.3	35
48	Functional responses of the rotifers <i>Brachionus calyciflorus</i> and <i>Brachionus rubens</i> feeding on armored and unarmored ciliates. Limnology and Oceanography, 2000, 45, 1175-1179.	3.1	34
49	Effects of water temperature on summer periphyton biomass in shallow lakes: a pan-European mesocosm experiment. Aquatic Sciences, 2015, 77, 499-510.	1.5	34
50	Long-term response of daily epilimnetic temperature extrema to climate forcing. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2467-2477.	1.4	33
51	Climate change effects on shallow lakes: design and preliminary results of a cross-European climate gradient mesocosm experiment. Estonian Journal of Ecology, 2014, 63, 71.	0.5	30
52	A matter of timing: heat wave impact on crustacean zooplankton. Freshwater Biology, 2010, 55, 1769-1779.	2.4	29
53	Phytoplankton and cyanobacteria abundances in midâ€21st century lakes depend strongly on future land use and climate projections. Global Change Biology, 2021, 27, 6409-6422.	9.5	27
54	Long-term response of Dreissena polymorpha larvae to physical and biological forcing in a shallow lake. Oecologia, 2007, 151, 104-114.	2.0	25

#	Article	IF	CITATIONS
55	Quantifying change in pelagic plankton network stability and topology based on empirical long-term data. Ecological Indicators, 2016, 65, 76-88.	6.3	25
56	Evidence for biochemical limitation of population growth and reproduction of the rotifer Keratella quadrata fed with freshwater protists. Journal of Plankton Research, 2006, 28, 1027-1038.	1.8	24
57	Wind and trophic status explain within and among″ake variability of algal biomass. Limnology and Oceanography Letters, 2018, 3, 409-418.	3.9	24
58	Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty. Limnology and Oceanography: Methods, 2014, 12, 303-312.	2.0	23
59	Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: a pan-European mesocosm experiment. Aquatic Ecology, 2017, 51, 257-273.	1.5	23
60	Effects of trophic status, water level, and temperature on shallow lake metabolism and metabolic balance: A standardized panâ€European mesocosm experiment. Limnology and Oceanography, 2019, 64, 616-631.	3.1	23
61	Longâ€term warming destabilizes aquatic ecosystems through weakening biodiversityâ€mediated causal networks. Global Change Biology, 2020, 26, 6413-6423.	9.5	23
62	Worldwide lake level trends and responses to background climate variation. Hydrology and Earth System Sciences, 2020, 24, 2593-2608.	4.9	23
63	Reproductive success of the rotifer Brachionus calyciflorus feeding on ciliates and flagellates of different trophic modes. Freshwater Biology, 2002, 47, 1832-1839.	2.4	22
64	Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyllâ€ <i>a</i> in north temperate lakes. Global Change Biology, 2021, 27, 4615-4629.	9.5	22
65	Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events. Environmental Modelling and Software, 2020, 133, 104852.	4.5	21
66	Causal networks of phytoplankton diversity and biomass are modulated by environmental context. Nature Communications, 2022, 13, 1140.	12.8	18
67	Environmental Impacts—Lake Ecosystems. Regional Climate Studies, 2016, , 315-340.	1.2	14
68	Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms. Limnology and Oceanography, 2022, 67, .	3.1	13
69	Sterol Composition of Freshwater Algivorous Ciliates Does Not Resemble Dietary Composition. Microbial Ecology, 2007, 53, 74-81.	2.8	12
70	New Automated Method to Develop Geometrically Corrected Time Series of Brightness Temperatures from Historical AVHRR LAC Data. Remote Sensing, 2016, 8, 169.	4.0	11
71	Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake. Inland Waters, 2018, 8, 82-95.	2.2	11
72	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & amp; Technology, 2016, 50, 3285-3286.	10.0	10

#	ARTICLE	IF	CITATIONS
73	The extent and variability of stormâ€induced temperature changes in lakes measured with longâ€ŧerm and highâ€frequency data. Limnology and Oceanography, 2021, 66, 1979-1992.	3.1	10
74	Experimental comparison of periphyton removal by chironomid larvae and Daphnia magna. Inland Waters, 2015, 5, 81-88.	2.2	9
75	Early warning signals of regime shifts for aquatic systems: Can experiments help to bridge the gap between theory and real-world application?. Ecological Complexity, 2021, 47, 100944.	2.9	9
76	Supplementation of the protist Chilomonas paramecium with a highly unsaturated fatty acid enhances its nutritional quality for the rotifer Keratella quadrata. Journal of Plankton Research, 2005, 27, 663-670.	1.8	8
77	Using dynamic factor analysis to show how sampling resolution and data gaps affect the recognition of patterns in limnological time series. Inland Waters, 2016, 6, 284-294.	2.2	8
78	Disentangling limnological processes in the timeâ€frequency domain. Limnology and Oceanography, 2019, 64, 423-440.	3.1	8
79	Variation in the predictability of lake plankton metric types. Limnology and Oceanography, 2022, 67, 608-620.	3.1	7
80	Longâ€ŧerm trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshwater Biology, 2022, 67, 1532-1542.	2.4	7
81	Thresholdâ€driven shifts in two copepod species: Testing ecological theory with observational data. Limnology and Oceanography, 2013, 58, 741-752.	3.1	6
82	Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Müggelsee (Germany) by means of evolutionary computation. Environmental Modelling and Software, 2021, 146, 105224.	4.5	6
83	Phytoplankton responses to repeated pulse perturbations imposed on a trend of increasing eutrophication. Ecology and Evolution, 2022, 12, e8675.	1.9	6
84	The importance of nonrandom and random trait patterns in phytoplankton communities: a case study from Lake Müggelsee, Germany. Theoretical Ecology, 2019, 12, 501-512.	1.0	2