
Jakob Voelkl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419644/publications.pdf Version: 2024-02-01

IAKOB VOFLKI

#	Article	IF	CITATIONS
1	GWAS meta-analysis followed by Mendelian randomization revealed potential control mechanisms for circulating α-Klotho levels. Human Molecular Genetics, 2022, 31, 792-802.	2.9	5
2	Serum Calcification Propensity and Calcification of the Abdominal Aorta in Patients With Primary Aldosteronism. Frontiers in Cardiovascular Medicine, 2022, 9, 771096.	2.4	4
3	Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovascular Research, 2021, 117, 930-941.	3.8	38
4	Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clinical Science, 2021, 135, 201-227.	4.3	39
5	Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clinical Science, 2021, 135, 515-534.	4.3	9
6	Associations of Serum Cortisol with Cardiovascular Risk and Mortality in Patients Referred to Coronary Angiography. Journal of the Endocrine Society, 2021, 5, bvab017.	0.2	6
7	Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Archiv European Journal of Physiology, 2021, 473, 1899-1910.	2.8	7
8	Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochemical and Biophysical Research Communications, 2021, 582, 28-34.	2.1	4
9	Zinc Ameliorates the Osteogenic Effects of High Glucose in Vascular Smooth Muscle Cells. Cells, 2021, 10, 3083.	4.1	11
10	The Case A nonhealing skin ulcer in a patient 5 years after successful transplantation. Kidney International, 2021, 100, 1357-1358.	5.2	1
11	Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. International Journal of Molecular Sciences, 2020, 21, 7207.	4.1	19
12	NO Synthesis Markers Are Not Significantly Associated with Blood Pressure and Endothelial Dysfunction in Patients with Arterial Hypertension: A Cross-Sectional Study. Journal of Clinical Medicine, 2020, 9, 3895.	2.4	2
13	Associations of Thyroid Hormones and Resting Heart Rate in Patients Referred to Coronary Angiography. Hormone and Metabolic Research, 2020, 52, 850-855.	1.5	3
14	Association of Serum Uromodulin with Death, Cardiovascular Events, and Kidney Failure in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 616-624.	4.5	25
15	Impact of Î ² -glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. Journal of Molecular Medicine, 2020, 98, 985-997.	3.9	20
16	Stimulation of ORAI1 expression, store-operated Ca2+ entry, and osteogenic signaling by high glucose exposure of human aortic smooth muscle cells. Pflugers Archiv European Journal of Physiology, 2020, 472, 1093-1102.	2.8	7
17	Beta-Glycerophosphate-Induced ORAI1 Expression and Store Operated Ca2+ Entry in Megakaryocytes. Scientific Reports, 2020, 10, 1728.	3.3	9
18	Phosphate-induced ORAI1 expression and store-operated Ca2+ entry in aortic smooth muscle cells. Journal of Molecular Medicine, 2019, 97, 1465-1475.	3.9	17

Jakob Voelkl

#	Article	IF	CITATIONS
19	Inhibition of vascular smooth muscle cell calcification by vasorin through interference with TGFβ1 signaling. Cellular Signalling, 2019, 64, 109414.	3.6	12
20	Klotho Deficiency Induces Arteriolar Hyalinosis in a Trade-Off with Vascular Calcification. American Journal of Pathology, 2019, 189, 2503-2515.	3.8	6
21	Diagnostic Accuracy of the Aldosterone–to–Active Renin Ratio for Detecting Primary Aldosteronism. Journal of the Endocrine Society, 2019, 3, 1748-1758.	0.2	6
22	SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18. Pflugers Archiv European Journal of Physiology, 2019, 471, 889-899.	2.8	15
23	Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cellular and Molecular Life Sciences, 2019, 76, 2077-2091.	5.4	127
24	An overview of the mechanisms in vascular calcification during chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2019, 28, 289-296.	2.0	37
25	Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight, 2019, 4, .	5.0	25
26	Serum- and glucocorticoid-inducible kinase 1 and the response to cell stress. Cell Stress, 2019, 3, 1-8.	3.2	38
27	Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging, 2019, 11, 5445-5462.	3.1	33
28	Fibulin-3 Attenuates Phosphate-Induced Vascular Smooth Muscle Cell Calcification by Inhibition of Oxidative Stress. Cellular Physiology and Biochemistry, 2018, 46, 1305-1316.	1.6	43
29	Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-κB. Journal of the American Society of Nephrology: JASN, 2018, 29, 1636-1648.	6.1	109
30	Expanded Haemodialysis Therapy of Chronic Haemodialysis Patients Prevents Calcification and Apoptosis of Vascular Smooth Muscle Cells in vitro. Blood Purification, 2018, 45, 131-138.	1.8	20
31	FP089ARTERIOLAR HYALINOSIS IN KLOTHO DEFICIENCY. Nephrology Dialysis Transplantation, 2018, 33, i77-i77.	0.7	0
32	Adenylyl cyclase 6 in acid-base balance – adding complexity. Clinical Science, 2018, 132, 1995-1997.	4.3	1
33	Heterotrimeric G-protein subunit G <i>α</i> _{i2} contributes to agonist-sensitive apoptosis and degranulation in murine platelets. Physiological Reports, 2018, 6, e13841.	1.7	5
34	A high-fat diet stimulates fibroblast growth factor 23 formation in mice through TNFα upregulation. Nutrition and Diabetes, 2018, 8, 36.	3.2	32
35	SGK1 Inhibits Autophagy in Murine Muscle Tissue. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	19
36	Role of Cytosolic Serine Hydroxymethyl Transferase 1 (SHMT1) in Phosphate-Induced Vascular Smooth Muscle Cell Calcification. Kidney and Blood Pressure Research, 2018, 43, 1212-1221.	2.0	13

Jakob Voelkl

#	Article	IF	CITATIONS
37	Therapeutic Interference With Vascular Calcification—Lessons From Klotho-Hypomorphic Mice and Beyond. Frontiers in Endocrinology, 2018, 9, 207.	3.5	27
38	Role of PKB/SGK-dependent phosphorylation of GSK-3α/β in vascular calcification during cholecalciferol overload in mice. Biochemical and Biophysical Research Communications, 2018, 503, 2068-2074.	2.1	14
39	SGK1 induces vascular smooth muscle cell calcification through NF-κB signaling. Journal of Clinical Investigation, 2018, 128, 3024-3040.	8.2	114
40	Inhibition of osteo/chondrogenic transformation of vascular smooth muscle cells by MgCl2 via calcium-sensing receptor. Journal of Hypertension, 2017, 35, 523-532.	0.5	37
41	Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells. Scientific Reports, 2017, 7, 2059.	3.3	53
42	Do K _V 7.1 channels contribute to control of arterial vascular tone?. British Journal of Pharmacology, 2017, 174, 150-162.	5.4	24
43	Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial. PLoS ONE, 2017, 12, e0173799.	2.5	10
44	Role of AMP-activated protein kinase α1 in angiotensin-II-induced renal Tgfß-activated kinase 1 activation. Biochemical and Biophysical Research Communications, 2016, 476, 267-272.	2.1	8
45	AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 36-43.	1.9	14
46	1,25(OH)2D3 dependent overt hyperactivity phenotype in klotho-hypomorphic mice. Scientific Reports, 2016, 6, 24879.	3.3	11
47	Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovascular Research, 2016, 110, 408-418.	3.8	73
48	Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice. American Journal of Physiology - Renal Physiology, 2016, 310, F102-F108.	2.7	15
49	SGK1-Sensitive Regulation of Cyclin-Dependent Kinase Inhibitor 1B (p27) in Cardiomyocyte Hypertrophy. Cellular Physiology and Biochemistry, 2015, 37, 603-614.	1.6	21
50	Inhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine. Kidney and Blood Pressure Research, 2015, 40, 490-499.	2.0	36
51	Pivotal Role of Serum- and Glucocorticoid-Inducible Kinase 1 in Vascular Inflammation and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 547-557.	2.4	55
52	Impact of AMP-Activated Protein Kinase α1 Deficiency on Tissue Injury following Unilateral Ureteral Obstruction. PLoS ONE, 2015, 10, e0135235.	2.5	12
53	Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling. Biochemical and Biophysical Research Communications, 2014, 445, 244-249.	2.1	14
54	Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opinion on Investigational Drugs, 2013, 22, 701-714.	4.1	78

JAKOB VOELKL

#	Article	IF	CITATIONS
55	Vascular calcificationis aldosterone a culprit?. Nephrology Dialysis Transplantation, 2013, 28, 1080-1084.	0.7	67
56	Sgk1-Dependent Stimulation of Cardiac Na ⁺ /H ⁺ Exchanger Nhe1 by Dexamethasone. Cellular Physiology and Biochemistry, 2013, 32, 25-38.	1.6	654
57	Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations. Kidney and Blood Pressure Research, 2013, 38, 42-51.	2.0	107
58	PKB/SGK-Resistant GSK-3 Signaling Following Unilateral Ureteral Obstruction. Kidney and Blood Pressure Research, 2013, 38, 156-164.	2.0	21
59	Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice. Journal of Clinical Investigation, 2013, 123, 812-22.	8.2	128
60	Sgk1 sensitivity of Na+/H+ exchanger activity and cardiac remodeling following pressure overload. Basic Research in Cardiology, 2012, 107, 236.	5.9	47