
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419086/publications.pdf Version: 2024-02-01

Τιπλ Ι Ριπγκινεν

#	Article	IF	CITATIONS
1	Ultra″ow Frequency Foreshock Waves and Ion Dynamics at Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
2	New Findings From Explainable SYMâ€H Forecasting Using Gradient Boosting Machines. Space Weather, 2022, 20, .	1.3	11
3	What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 2021, 11, 42.	1.1	32
4	The Space Weather Modeling Framework Goes Open Access. Eos, 2021, 102, .	0.1	4
5	Remote sensing of cometary bow shocks: modelled asymmetric outgassing and pickup ion observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4735-4749.	1.6	7
6	Stormtime Energetics: Energy Transport Across the Magnetopause in a Global MHD Simulation. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	9
7	Transmission of an ICME Sheath Into the Earth's Magnetosheath and the Occurrence of Traveling Foreshocks. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	6
8	Ultra-low-frequency waves in the ion foreshock of Mercury: a global hybrid modelling study. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4147-4161.	1.6	18
9	Oxygen Ion Escape From Venus Is Modulated by Ultra‣ow Frequency Waves. Geophysical Research Letters, 2020, 47, e2020GL087462.	1.5	12
10	GUMICS-4 analysis of interplanetary coronal mass ejection impact on Earth during low and typical Mach number solar winds. Annales Geophysicae, 2019, 37, 561-579.	0.6	2
11	Hybrid modeling of cometary plasma environments. Astronomy and Astrophysics, 2019, 630, A45.	2.1	12
12	Alfvén Ion Cyclotron Waves in Sheath Regions Driven by Interplanetary Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2019, 124, 3893-3909.	0.8	17
13	Outer Van Allen Radiation Belt Response to Interacting Interplanetary Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2019, 124, 1927-1947.	0.8	14
14	Direct evidence of nonstationary collisionless shocks in space plasmas. Science Advances, 2019, 5, eaau9926.	4.7	27
15	Jensenâ€Shannon Complexity and Permutation Entropy Analysis of Geomagnetic Auroral Currents. Journal of Geophysical Research: Space Physics, 2019, 124, 2541-2551.	0.8	11
16	The Crossâ€Polar Cap Saturation in GUMICSâ€4 During High Solar Wind Driving. Journal of Geophysical Research: Space Physics, 2018, 123, 3320-3332.	0.8	7
17	The Response of the Venusian Plasma Environment to the Passage of an ICME: Hybrid Simulation Results and Venus Express Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3580-3601.	0.8	8
18	Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection. Annales Geophysicae, 2018, 36, 793-808.	0.6	24

#	Article	IF	CITATIONS
19	Highâ€Frequency Geomagnetic Fluctuations at Auroral Oval and Polar Cap. Space Weather, 2018, 16, 1057-1072.	1.3	1
20	Subcritical Growth of Electron Phase-space Holes in Planetary Radiation Belts. Astrophysical Journal, 2017, 846, 83.	1.6	6
21	Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 2017, 14, 5.	7.8	262
22	Temperature variations in the dayside magnetosheath and their dependence on ionâ€scale magnetic structures: THEMIS statistics and measurements by MMS. Journal of Geophysical Research: Space Physics, 2017, 122, 6165-6184.	0.8	10
23	Tail reconnection in the global magnetospheric context: Vlasiator first results. Annales Geophysicae, 2017, 35, 1269-1274.	0.6	22
24	The impact on global magnetohydrodynamic simulations from varying initialisation methods: results from GUMICS-4. Annales Geophysicae, 2017, 35, 907-922.	0.6	3
25	The dawn–dusk asymmetry of ion density in the dayside magnetosheath and its annual variability measured by THEMIS. Annales Geophysicae, 2016, 34, 511-528.	0.6	10
26	Statistical mapping of ULF Pc3 velocity fluctuations in the Earth's dayside magnetosheath as a function of solar wind conditions. Advances in Space Research, 2016, 58, 196-207.	1.2	13
27	Solar windâ€magnetosphere coupling efficiency during ejecta and sheathâ€driven geomagnetic storms. Journal of Geophysical Research: Space Physics, 2016, 121, 4378-4396.	0.8	27
28	ON THE CONNECTION BETWEEN MICROBURSTS AND NONLINEAR ELECTRONIC STRUCTURES IN PLANETARY RADIATION BELTS. Astrophysical Journal, 2016, 816, 51.	1.6	22
29	Magnetosheath control of solar windâ€magnetosphere coupling efficiency. Journal of Geophysical Research: Space Physics, 2016, 121, 8728-8739.	0.8	23
30	Solar wind energy input to the magnetosheath and at the magnetopause. Geophysical Research Letters, 2015, 42, 4723-4730.	1.5	9
31	The impact of solar wind ULF <i>B</i> _{<i>z</i>} fluctuations on geomagnetic activity for viscous timescales during strongly northward and southward IMF. Journal of Geophysical Research: Space Physics, 2015, 120, 9307-9322.	0.8	26
32	Universal properties of mirror mode turbulence in the Earth's magnetosheath. Geophysical Research Letters, 2015, 42, 3085-3092.	1.5	21
33	A statistical study of the dawnâ€dusk asymmetry of ion temperature anisotropy and mirror mode occurrence in the terrestrial dayside magnetosheath using THEMIS data. Journal of Geophysical Research: Space Physics, 2015, 120, 5489-5503.	0.8	45
34	Solar-wind control of plasma sheet dynamics. Annales Geophysicae, 2015, 33, 845-855.	0.6	2
35	A statistical study into the spatial distribution and dawnâ€dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions. Journal of Geophysical Research: Space Physics, 2015, 120, 2767-2782.	0.8	34
36	Unraveling the drivers of the storm time radiation belt response. Geophysical Research Letters, 2015, 42, 3076-3084.	1.5	90

#	Article	IF	CITATIONS
37	Substorm Current Wedge Revisited. Space Science Reviews, 2015, 190, 1-46.	3.7	184
38	On the threshold energization of radiation belt electrons by double layers. Journal of Geophysical Research: Space Physics, 2014, 119, 8243-8248.	0.8	8
39	Preface: Multi-Disciplinary Arctic Research for Science and Society. Surveys in Geophysics, 2014, 35, 1093-1094.	2.1	0
40	MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations. Journal of Geophysical Research: Space Physics, 2014, 119, 3179-3188.	0.8	21
41	An influence of long-lasting and gradual magnetic flux transport on fate of magnetotail fast plasma flows: An energetic particle injection substorm event study. Planetary and Space Science, 2014, 101, 135-148.	0.9	4
42	Substorm occurrence during quiet solar wind driving. Journal of Geophysical Research: Space Physics, 2014, 119, 2978-2989.	0.8	5
43	Annual variations in westward auroral electrojet and substorm occurrence rate during solar cycle 23. Journal of Geophysical Research: Space Physics, 2014, 119, 2061-2068.	0.8	7
44	A statistical study of magnetic field fluctuations in the dayside magnetosheath and their dependence on upstream solar wind conditions. Journal of Geophysical Research: Space Physics, 2014, 119, 6231-6248.	0.8	38
45	Plasma sheet magnetic fields and flows during steady magnetospheric convection events. Journal of Geophysical Research: Space Physics, 2013, 118, 6136-6144.	0.8	9
46	Changes in solar wind–magnetosphere coupling with solar cycle, season, and time relative to stream interfaces. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 1-13.	0.6	31
47	The Earthward Edge of the Plasma Sheet in Magnetospheric Substorms. Geophysical Monograph Series, 2013, , 147-160.	0.1	18
48	Storm-time ring current: model-dependent results. Annales Geophysicae, 2012, 30, 177-202.	0.6	28
49	Auroral electrojets variations caused by recurrent highâ€speed solar wind streams during the extreme solar minimum of 2008. Journal of Geophysical Research, 2012, 117, .	3.3	8
50	Alfvén: magnetosphere—ionosphere connection explorers. Experimental Astronomy, 2012, 33, 445-489.	1.6	9
51	The GUMICS-4 global MHD magnetosphere–ionosphere coupling simulation. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 80, 48-59.	0.6	88
52	From space weather toward space climate time scales: Substorm analysis from 1993 to 2008. Journal of Geophysical Research, 2011, 116, .	3.3	43
53	Propagation of a shock-related disturbance in the Earth's magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	15
54	Auroral electrojets during deep solar minimum at the end of solar cycle 23. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29

#	Article	IF	CITATIONS
55	Contribution of magnetotail reconnection to the cross-polar cap electric potential drop. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
56	Energy conversion at the Earth's magnetopause using single and multispacecraft methods. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	19
57	Geoefficiency of solar wind discontinuities. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 112-122.	0.6	5
58	Nonlinear solar wind—magnetosphere coupling. , 2011, , .		0
59	Spatial dependence of magnetopause energy transfer: Cluster measurements verifying global simulations. Annales Geophysicae, 2011, 29, 823-838.	0.6	7
60	On large plasmoid formation in a global magnetohydrodynamic simulation. Annales Geophysicae, 2011, 29, 167-179.	0.6	14
61	Magnetospheric modes and solar wind energy coupling efficiency. Journal of Geophysical Research, 2010, 115, .	3.3	23
62	Magnetospheric feedback in solar wind energy transfer. Journal of Geophysical Research, 2010, 115, .	3.3	15
63	Timing of changes in the solar wind energy input in relation to ionospheric response. Journal of Geophysical Research, 2010, 115, .	3.3	6
64	On the response of ionospheric electrojets to solar wind discontinuities. Annales Geophysicae, 2009, 27, 3791-3803.	0.6	1
65	Different magnetospheric modes: solar wind driving and coupling efficiency. Annales Geophysicae, 2009, 27, 4281-4291.	0.6	19
66	Supermagnetosonic Jets behind a Collisionless Quasiparallel Shock. Physical Review Letters, 2009, 103, 245001.	2.9	121
67	Statistical survey on sawtooth events, SMCs and isolated substorms. Advances in Space Research, 2009, 44, 376-384.	1.2	25
68	Changes in the response of the AL Index with solar cycle and epoch within a corotating interaction region. Annales Geophysicae, 2009, 27, 3165-3178.	0.6	16
69	Energy as a tracer of magnetospheric processes: GUMICS-4 global MHD results and observations compared. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 687-707.	0.6	11
70	Magnetospheric currents during sawtooth events: Eventâ€oriented magnetic field model analysis. Journal of Geophysical Research, 2008, 113, .	3.3	16
71	Shock propagation in the magnetosphere: Observations and MHD simulations compared. Journal of Geophysical Research, 2008, 113, .	3.3	24
72	Multispacecraft and groundâ€based observations of substorm timing and activations: Two case studies. Journal of Geophysical Research, 2008, 113, .	3.3	21

#	Article	IF	CITATIONS
73	Space Weather: Terrestrial Perspective. Living Reviews in Solar Physics, 2007, 4, 1.	7.8	198
74	Auroral streamers and magnetic flux closure. Geophysical Research Letters, 2007, 34, .	1.5	7
75	Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere. Annales Geophysicae, 2007, 25, 801-814.	0.6	88
76	Solar wind–magnetosphere coupling efficiency for solar wind pressure impulses. Geophysical Research Letters, 2007, 34, .	1.5	16
77	Comparative statistical analysis of storm time activations and sawtooth events. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	46
78	Magnetospheric convection during intermediate driving: Sawtooth events and steady convection intervals as seen in Lyonâ€Fedderâ€Mobarry global MHD simulations. Journal of Geophysical Research, 2007, 112, .	3.3	22
79	An appeal from the Fellows Committee. Eos, 2007, 88, 269-269.	0.1	3
80	What drives magnetospheric activity under northward IMF conditions?. Geophysical Research Letters, 2007, 34, .	1.5	18
81	Solar wind electric field driving of magnetospheric activity: Is it velocity or magnetic field?. Geophysical Research Letters, 2007, 34, .	1.5	22
82	Continuous reconnection line and pressureâ€dependent energy conversion on the magnetopause in a global MHD model. Journal of Geophysical Research, 2007, 112, .	3.3	59
83	Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions. Geophysical Research Letters, 2007, 34, .	1.5	58
84	Solar wind—magnetosphere coupling: A review of recent results. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 256-264.	0.6	25
85	Global auroral imaging in the ILWS era. Advances in Space Research, 2007, 40, 409-418.	1.2	5
86	Hysteresis in solar wind power input to the magnetosphere. Geophysical Research Letters, 2006, 33, .	1.5	20
87	New interpretation of magnetospheric energy circulation. Geophysical Research Letters, 2006, 33, .	1.5	22
88	Magnetosphere preconditioning under northward IMF: Evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. Journal of Geophysical Research, 2006, 111, .	3.3	72
89	Compression of the Earth's magnetotail by interplanetary shocks directly drives transient magnetic flux closure. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	40
90	Evolution of the proton ring current energy distribution during 21–25 April 2001 storm. Journal of Geophysical Research, 2006, 111, .	3.3	32

#	Article	IF	CITATIONS
91	Magnetospheric current systems during stormtime sawtooth events. Journal of Geophysical Research, 2006, 111, .	3.3	43
92	On the characterization of magnetic reconnection in global MHD simulations. Annales Geophysicae, 2006, 24, 3059-3069.	0.6	41
93	Magnetopause energy and mass transfer: results from a global MHD simulation. Annales Geophysicae, 2006, 24, 3467-3480.	0.6	33
94	Energetics of a substorm on 15 August, 2001: Comparing empirical methods and a global MHD simulation. Advances in Space Research, 2005, 36, 1825-1829.	1.2	7
95	Magnetospheric substorms and the sources of inner magnetosphere particle acceleration. Geophysical Monograph Series, 2005, , 105-111.	0.1	5
96	Role of substorm-associated impulsive electric fields in the ring current development during storms. Annales Geophysicae, 2005, 23, 579-591.	0.6	74
97	Relation between the ring current and the tail current during magnetic storms. Annales Geophysicae, 2005, 23, 523-533.	0.6	41
98	The magnetotail reconnection region in a global MHD simulation. Annales Geophysicae, 2005, 23, 3753-3764.	0.6	21
99	Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis. Annales Geophysicae, 2005, 23, 2051-2068.	0.6	47
100	Proton isotropy boundaries as measured on mid- and low-altitude satellites. Annales Geophysicae, 2005, 23, 1839-1847.	0.6	25
101	Transition from substorm growth to substorm expansion phase as observed with a radial configuration of ISTP and Cluster spacecraft. Annales Geophysicae, 2005, 23, 2183-2198.	0.6	33
102	Multipulse and double-pulse velocities of Scandinavian Twin Auroral Radar Experiment (STARE) echoes. Radio Science, 2005, 40, n/a-n/a.	0.8	4
103	Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophysical Research Letters, 2005, 32, .	1.5	61
104	Ionospheric energy input as a function of solar wind parameters: global MHD simulation results. Annales Geophysicae, 2004, 22, 549-566.	0.6	46
105	Long-term evolution of magnetospheric current systems during storms. Annales Geophysicae, 2004, 22, 1317-1334.	0.6	53
106	Ionospheric Power Consumption in Global MHD Simulation Predicted From Solar Wind Measurements. IEEE Transactions on Plasma Science, 2004, 32, 1511-1518.	0.6	6
107	Role of solar wind dynamic pressure in driving ionospheric Joule heating. Journal of Geophysical Research, 2004, 109, .	3.3	37
108	Title is missing!. Cosmic Research, 2003, 41, 3-12.	0.2	24

#	Article	IF	CITATIONS
109	Locations of proton isotropic boundaries as measured by conjugate high-altitude and low-altitude satellites. Advances in Space Research, 2003, 31, 1265-1270.	1.2	0
110	Magnetotail flows can consume as much solar wind energy as a substorm. Journal of Geophysical Research, 2003, 108, .	3.3	3
111	Evidence of near-Earth breakup location. Geophysical Research Letters, 2003, 30, .	1.5	45
112	A pseudo-breakup observation: Localized current wedge across the postmidnight auroral oval. Journal of Geophysical Research, 2003, 108, SIA 4-1.	3.3	18
113	Seasonal and diurnal variation of geomagnetic activity: RevisedDstversus external drivers. Journal of Geophysical Research, 2003, 108, .	3.3	29
114	Stormtime energy transfer in global MHD simulation. Journal of Geophysical Research, 2003, 108, .	3.3	108
115	Modeling the ring current magnetic field during storms. Journal of Geophysical Research, 2002, 107, SMP 3-1.	3.3	34
116	Substorm energy budget during low and high solar activity: 1997 and 1999 compared. Journal of Geophysical Research, 2002, 107, SMP 15-1.	3.3	116
117	April 2000 magnetic storm: Solar wind driver and magnetospheric response. Journal of Geophysical Research, 2002, 107, SMP 15-1-SMP 15-21.	3.3	52
118	Interplanetary lyman alpha observations of swan during the rising phase of the 23rd solar cycle. Advances in Space Research, 2002, 29, 457-462.	1.2	3
119	Timing and location of phenomena during auroral breakup: A case study. Advances in Space Research, 2002, 30, 1775-1778.	1.2	6
120	Particle tracing in the Earth's magnetosphere and the ring current formation during storm times. Advances in Space Research, 2002, 30, 1817-1820.	1.2	9
121	Energy dissipation during a geomagnetic storm: May 1998. Advances in Space Research, 2002, 30, 2231-2240.	1.2	19
122	Dissipation to the joule heating: Isolated and stormtime substorms. Advances in Space Research, 2002, 30, 2305-2311.	1.2	7
123	Storm time ring current magnetic field modeling during May 15, 1997 event. Advances in Space Research, 2002, 30, 2175-2180.	1.2	2
124	Effects of induced currents onDstand on magnetic variations at midlatitude stations. Journal of Geophysical Research, 2002, 107, SMP 7-1.	3.3	46
125	Auroral observations in Finland: Results from all-sky cameras, 1973-1997. Journal of Geophysical Research, 2001, 106, 8109-8118.	3.3	17
126	Reconciliation of the substorm onset determined on the ground and at the Polar spacecraft. Geophysical Research Letters, 2001, 28, 107-110.	1.5	4

#	Article	IF	CITATIONS
127	Formation of intense nose structures. Geophysical Research Letters, 2001, 28, 491-494.	1.5	55
128	A study of inverted-V auroral acceleration mechanisms using Polar/Fast Auroral Snapshot conjunctions. Journal of Geophysical Research, 2001, 106, 18995-19011.	3.3	15
129	Mesoscale ionospheric electrodynamics observed with the MIRACLE network: 1. Analysis of a pseudobreakup spiral. Journal of Geophysical Research, 2001, 106, 24675-24690.	3.3	12
130	Location of high‐altitude cusp during steady solar wind conditions. Journal of Geophysical Research, 2001, 106, 21109-21122.	3.3	33
131	Cusp and magnetopause locations in global MHD simulation. Journal of Geophysical Research, 2001, 106, 29435-29450.	3.3	36
132	Ring current ion composition during solar minimum and rising solar activity: Polar/CAMMICE/MICS results. Journal of Geophysical Research, 2001, 106, 19131-19147.	3.3	41
133	At substorm onset, 40% of AL comes from underground. Journal of Geophysical Research, 2001, 106, 13119-13134.	3.3	70
134	Statistical study of auroral spirals. Journal of Geophysical Research, 2001, 106, 15415-15428.	3.3	21
135	Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe. Annales Geophysicae, 2001, 19, 1589-1612.	0.6	32
136	Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Annales Geophysicae, 2001, 19, 1613-1640.	0.6	30
137	A statistical study of evening sector arcs and electrojets. Advances in Space Research, 2001, 28, 1605-1610.	1.2	11
138	A search engine for auroral forms. Advances in Space Research, 2001, 28, 1611-1616.	1.2	16
139	How to address the accuracy of empirical magnetic field models?. Advances in Space Research, 2001, 28, 1717-1726.	1.2	2
140	Energy transport and dissipation in the magnetosphere during geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 421-429.	0.6	31
141	The global efficiency of relativistic electron production in the Earth's magnetosphere. Journal of Geophysical Research, 2001, 106, 19169-19178.	3.3	36
142	Energy content in the storm time ring current. Journal of Geophysical Research, 2001, 106, 19149-19156.	3.3	84
143	Near Earth Current Meander (Necm) Model of Substorms. Space Science Reviews, 2001, 95, 399-414.	3.7	7
144	The Sun–Earth Connection in Time Scales from Years to Decades and Centuries. Space Science Reviews, 2001, 95, 625-637.	3.7	38

#	Article	IF	CITATIONS
145	Comets in full sky \$mathsf{L_{alpha}}\$ maps of the SWAN instrument. Astronomy and Astrophysics, 2001, 368, 292-297.	2.1	25
146	Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval. Annales Geophysicae, 2001, 19, 1683-1696.	0.6	5
147	CUTLASS HF radar observations of high-velocity E-region echoes. Annales Geophysicae, 2001, 19, 411-424.	0.6	15
148	Ionospheric shear flow situations observed by the MIRACLE network, and the concept of Harang discontinuity. Geophysical Monograph Series, 2000, , 227-236.	0.1	7
149	Discovery of a comet by its Lyman-α emission. Nature, 2000, 405, 321-322.	13.7	16
150	Observations of plasma entry into the magnetosphere at late magnetic local times. Advances in Space Research, 2000, 25, 1617-1622.	1.2	2
151	Magnetotail currents during the growth phase and local auroral breakup. Geophysical Monograph Series, 2000, , 81-89.	0.1	4
152	Solar wind control of magnetospheric energy content: Substorm quenching and multiple onsets. Journal of Geophysical Research, 2000, 105, 5335-5356.	3.3	13
153	On auroral dynamics observed by HF radar: 1. Equatorward edge of the afternoon-evening diffuse luminosity belt. Annales Geophysicae, 2000, 18, 1560-1575.	0.6	10
154	Entry of plasma sheet particles into the inner magnetosphere as observed by Polar/CAMMICE. Journal of Geophysical Research, 2000, 105, 25205-25219.	3.3	46
155	Loading-unloading processes in the nightside ionosphere. Geophysical Research Letters, 2000, 27, 1627-1630.	1.5	55
156	Thin current sheet evolution as seen in observations, empirical models and MHD simulations. Geophysical Research Letters, 2000, 27, 1363-1366.	1.5	19
157	Evaluation of the tail current contribution toDst. Journal of Geophysical Research, 2000, 105, 5431-5439.	3.3	168
158	MHD simulation of the magnetotail during the December 10, 1996, substorm. Journal of Geophysical Research, 2000, 105, 27649-27663.	3.3	92
159	Plasma sheet ion injections into the auroral bulge: Correlative study of spacecraft and ground observations. Journal of Geophysical Research, 2000, 105, 18465-18481.	3.3	37
160	Ionospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 2000, 105, 10677-10690.	3.3	87
161	Collective phenomena in the inner magnetosphere. Physics of Plasmas, 1999, 6, 4195-4199.	0.7	9
162	The role of photoemission in the coupling of the Mercury surface and magnetosphere. Planetary and Space Science, 1999, 47, 1459-1463.	0.9	13

#	Article	IF	CITATIONS
163	First results from the hot plasma instrument PROMICS-3 on Interball-2. Annales Geophysicae, 1999, 17, 659-673.	0.6	3
164	Global magnetospheric response to IMF driving: ISTP observations, empirical modeling, and MHD simulations. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 153-162.	0.2	1
165	Substorms: A global instability of the magnetosphere-ionosphere system. Journal of Geophysical Research, 1999, 104, 14601-14611.	3.3	60
166	Size of the auroral oval: UV ovals and precipitation boundaries compared. Journal of Geophysical Research, 1999, 104, 2321-2331.	3.3	49
167	Ballooning instability in the presence of a plasma flow: A synthesis of tail reconnection and current disruption models for the initiation of substorms. Journal of Geophysical Research, 1999, 104, 10235-10248.	3.3	53
168	Time-dependent modeling of particles and electromagnetic fields during the substorm growth phase: Anisotropy of energetic electrons. Journal of Geophysical Research, 1999, 104, 10205-10220.	3.3	2
169	Equinoctial and solstitial averages of magnetospheric relativistic electrons: A strong semiannual modulation. Geophysical Research Letters, 1999, 26, 3193-3196.	1.5	53
170	Hybrid Input Algorithm: An event-oriented magnetospheric model. Journal of Geophysical Research, 1999, 104, 24977-24993.	3.3	65
171	Spatial extent and dynamics of a thin current sheet during the substorm growth phase on December 10, 1996. Journal of Geophysical Research, 1999, 104, 28475-28490.	3.3	25
172	High-altitude polar cap electric field responses to southward turnings of the interplanetary magnetic field. Journal of Geophysical Research, 1998, 103, 26533-26545.	3.3	4
173	Mapping between the ionospheric and the tail electric fields in a time-dependent Earth's magnetosphere. Journal of Geophysical Research, 1998, 103, 9153-9164.	3.3	13
174	Two substorm intensifications compared: Onset, expansion, and global consequences. Journal of Geophysical Research, 1998, 103, 15-27.	3.3	70
175	Pseudobreakup and substorm onset: Observations and MHD simulations compared. Journal of Geophysical Research, 1998, 103, 14847-14854.	3.3	56
176	Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP. Journal of Geophysical Research, 1998, 103, 17279-17291.	3.3	144
177	A strong CME-related magnetic cloud interaction with the Earth's Magnetosphere: ISTP observations of rapid relativistic electron acceleration on May 15, 1997. Geophysical Research Letters, 1998, 25, 2975-2978.	1.5	118
178	Solar cycle correlations of substorm and auroral occurrence frequency. Geophysical Research Letters, 1998, 25, 3087-3090.	1.5	21
179	Dispersive magnetosheath-like ion injections in the evening sector on January 11, 1997. Geophysical Research Letters, 1998, 25, 2569-2572.	1.5	15
180	Reply [to "Comment on "A quantitative assessment of energy storage and release in the Earth's magnetotailâ€; by D. N. Baker, T. I. Pulkkinen, M. Hesse, and R. L. McPherronâ€]. Journal of Geophysical Research, 1998, 103, 17733-17734.	3.3	1

#	Article	IF	CITATIONS
181	Imaging the Plasma Sheet with Energetic Ions from the POLAR Satellite. Astrophysics and Space Science Library, 1998, , 813-816.	1.0	5
182	Observations of Substorm Electrodynamics Using the Miracle Network. Astrophysics and Space Science Library, 1998, , 111-114.	1.0	48
183	Substorms: A Global Magnetospheric Instability. Astrophysics and Space Science Library, 1998, , 231-235.	1.0	7
184	Magnetospheric Response Times Following Southward IMF Turnings. Astrophysics and Space Science Library, 1998, , 711-714.	1.0	0
185	Large-Scale Inductive Electric Fields and Anisotropy of Energetic Electrons in the Near-Earth Tail. Astrophysics and Space Science Library, 1998, , 761-766.	1.0	Ο
186	MHD drift ballooning instability near the inner edge of the nearâ€Earth plasma sheet and its application to substorm onset. Journal of Geophysical Research, 1997, 102, 14397-14406.	3.3	62
187	Observations of bidirectional electrons in the distant tail lobes: GEOTAIL results. Geophysical Research Letters, 1997, 24, 959-962.	1.5	6
188	Solar wind-magnetosphere coupling during an isolated substorm event: A multispacecraft ISTP study. Geophysical Research Letters, 1997, 24, 983-986.	1.5	15
189	Mapping of the ionospheric fieldâ€aligned currents to the equatorial magnetosphere. Journal of Geophysical Research, 1997, 102, 14467-14476.	3.3	15
190	Reexamination of driven and unloading aspects of magnetospheric substorms. Journal of Geophysical Research, 1997, 102, 7169-7177.	3.3	23
191	A quantitative assessment of energy storage and release in the Earth's magnetotail. Journal of Geophysical Research, 1997, 102, 7159-7168.	3.3	90
192	INTERBALL magnetotail boundary case studies. Advances in Space Research, 1997, 20, 999-1015.	1.2	10
193	Global Substorm Cycle: What can the models tell us?. , 1997, 18, 1-37.		5
194	First results from the plasma composition spectrometer PROMICS-3 in the Interball project. Annales Geophysicae, 1997, 15, 542-552.	0.6	14
195	Auroral precipitation fading before and at substorm onset: ionospheric and geostationary signatures. Annales Geophysicae, 1997, 15, 967-983.	0.6	20
196	Energy requirement of magnetic reconnection during magnetospheric substorms. Advances in Space Research, 1997, 19, 1923-1927.	1.2	2
197	Correction to "Comparison of empirical field models and global MHD simulations: The near-tail currents―by T. I.Pulkkinen, D. N. Baker, R. J. Walker, J. Raeder, and M. Ashour-Abdalla. Geophysical Research Letters, 1996, 23, 315-316.	1.5	1
198	Coupled-mode scenario for the magnetospheric dynamics. Journal of Geophysical Research, 1996, 101, 13047-13065.	3.3	103

#	Article	IF	CITATIONS
199	Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 1996, 101, 12975-13010.	3.3	861
200	Testing the accuracy of magnetospheric model field line mapping. Journal of Geophysical Research, 1996, 101, 27431-27442.	3.3	28
201	What can we tell about global auroral-electrojet activity from a single meridional magnetometer chain?. Annales Geophysicae, 1996, 14, 1177-1185.	0.6	35
202	Steady magnetospheric convection: A review of recent results. Space Science Reviews, 1996, 75, 551-604.	3.7	231
203	What can we tell about global auroral-electrojet activity from a single meridional magnetometer chain?. Annales Geophysicae, 1996, 14, 1177.	0.6	23
204	A Model for the Distant Tail Field: ISEE 3 Revisited. Journal of Geomagnetism and Geoelectricity, 1996, 48, 455-471.	0.8	15
205	A Possible Interpretation of Cold Ion Beams in the Earth's Tail Lobe. Journal of Geomagnetism and Geoelectricity, 1996, 48, 699-710.	0.8	20
206	Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents. Geophysical Research Letters, 1995, 22, 675-678.	1.5	15
207	Auroral fading in ionosphere-magnetosphere coupling model: Implications for possible mechanisms. Geophysical Research Letters, 1995, 22, 2049-2052.	1.5	9
208	Analysis of the substorm trigger phase using multiple ground-based instrumentation. Geophysical Research Letters, 1995, 22, 2065-2068.	1.5	14
209	On the dynamical development of the downward field-aligned current in the substorm current wedge. Journal of Geophysical Research, 1995, 100, 14863.	3.3	3
210	Midnight velocity shear zone and the concept of Harang discontinuity. Journal of Geophysical Research, 1995, 100, 9539.	3.3	42
211	Mapping of the auroral oval and individual arcs during substorms. Journal of Geophysical Research, 1995, 100, 21987-21994.	3.3	27
212	On the dynamical development of the downward field-aligned current in the substorm current wedge. Journal of Geophysical Research, 1995, 100, 14863-14874.	3.3	2
213	Multi-spacecraft study of a substorm growth and expansion phase features using a time-evolving field model. Geophysical Monograph Series, 1994, , 101-110.	0.1	13
214	Recovery phase of magnetospheric substorms and its association with morning-sector aurora. Journal of Geophysical Research, 1994, 99, 4115.	3.3	57
215	Magnetospheric field and current distributions during the substorm recovery phase. Journal of Geophysical Research, 1994, 99, 10955.	3.3	42
216	Signatures of the substorm recovery phase at high-altitude spacecraft. Journal of Geophysical Research, 1994, 99, 10967.	3.3	20

#	Article	IF	CITATIONS
217	Thin current sheets in the magnetotail during substorms: CDAW 6 revisited. Journal of Geophysical Research, 1994, 99, 5793.	3.3	80
218	Growth-phase thinning of the near-Earth current sheet during the CDAW 6 substorm. Journal of Geophysical Research, 1994, 99, 5805.	3.3	153
219	Near-Earth substorm onset: A coordinated study. Geophysical Research Letters, 1994, 21, 1875-1878.	1.5	20
220	Hybrid state of the tail magnetic configuration during steady convection events. Journal of Geophysical Research, 1994, 99, 23571.	3.3	65
221	Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere. Journal of Geophysical Research, 1993, 98, 5801-5813.	3.3	135
222	CDAW 9 analysis of magnetospheric events on May 3, 1986: Event C. Journal of Geophysical Research, 1993, 98, 3815-3834.	3.3	79
223	Simultaneous observation of the poleward expansion of substorm electrojet activity and the tailward expansion of current sheet disruption in the nearâ€Earth magnetotail. Journal of Geophysical Research, 1993, 98, 9285-9295.	3.3	38
224	Thin current sheets in the deep geomagnetic tail. Geophysical Research Letters, 1993, 20, 2427-2430.	1.5	49
225	Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase. Journal of Geophysical Research, 1992, 97, 19283-19297.	3.3	103
226	Modeling the growth phase of a substorm using the Tsyganenko Model and multiâ€spacecraft observations: CDAWâ€9. Geophysical Research Letters, 1991, 18, 1963-1966.	1.5	115
227	Mapping of auroral arcs during substorm growth phase. Journal of Geophysical Research, 1991, 96, 21087-21094.	3.3	15
228	A study of magnetic field and current configurations in the magnetotail at the time of a substorm onset. Planetary and Space Science, 1991, 39, 833-845.	0.9	34
229	Mapping of the auroral horn into the magnetotail. Planetary and Space Science, 1990, 38, 1179-1186.	0.9	7
230	Satellite and groundâ€based observations of a fading transpolar arc. Journal of Geophysical Research, 1990, 95, 5817-5824.	3.3	18
231	Sources, Transport, and Losses of Energetic Particles During Geomagnetic Storms. Geophysical Monograph Series, 0, , 9-21.	0.1	12
232	Particle Acceleration in the Inner Magnetosphere. Geophysical Monograph Series, 0, , 73-85.	0.1	14
233	Energization of the Inner Magnetosphere by Solar Wind Pressure Pulses. Geophysical Monograph Series, 0, , 113-119.	0.1	1
234	Injection of Energetic Ions During the 31 March 0630 Substorm. Geophysical Monograph Series, 0, , 147-154.	0.1	14

#	Article	IF	CITATIONS
235	Comparison of MHD Simulations of Isolated and Storm Time Substorms. Geophysical Monograph Series, 0, , 271-281.	0.1	7
236	Global Magnetospheric Dynamics During Magnetic Storms of Different Intensities. Geophysical Monograph Series, 0, , 293-300.	0.1	0
237	Drivers of the Inner Magnetosphere. Geophysical Monograph Series, 0, , 135-145.	0.1	5
238	Storm-substorm coupling during 16 Hours of Dst steadily at â^'150 nT. Geophysical Monograph Series, 0, , 155-161.	0.1	4
239	Large-Scale Structure of the Magnetosphere. Geophysical Monograph Series, 0, , 21-31.	0.1	7
240	Testing the Hypothesis That Charge Exchange Can Cause a Two-Phase Decay. Geophysical Monograph Series, 0, , 211-225.	0.1	17
241	Substorm Associated Spikes in High Energy Particle Precipitation. Geophysical Monograph Series, 0, , 227-236.	0.1	10
242	Auroral Signatures of Substorm Recovery Phase: A Case Study. Geophysical Monograph Series, 0, , 333-341.	0.1	16
243	Magnetic Field Models in the Inner Magnetosphere. Geophysical Monograph Series, 0, , 161-166.	0.1	2