Stephen J Keely

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418137/publications.pdf Version: 2024-02-01

STEDHEN I KEELV

#	Article	IF	CITATIONS
1	Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. American Journal of Physiology - Renal Physiology, 2022, 322, G201-G222.	3.4	11
2	Intestinal secretory mechanisms and diarrhea. American Journal of Physiology - Renal Physiology, 2022, 322, G405-G420.	3.4	12
3	Regulation of the Nuclear Bile Acid Receptor, Farnesoid X Receptor, by the Omegaâ€3 Polyunsaturated Fatty Acid, Alphaâ€Linolenic Acid, in Colonic Epithelial Cells. FASEB Journal, 2022, 36, .	0.5	0
4	Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by the Nuclear Bile Acid Receptor, Farnesoid X Receptor. FASEB Journal, 2022, 36, .	0.5	0
5	Vitamin D Receptor Activation Exerts Anti ecretory Actions In Colonic Epithelial Cells. FASEB Journal, 2022, 36, .	0.5	0
6	Expression, regulation and function of Aquaporin-3 in colonic epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183619.	2.6	18
7	Novel polyurethane based particulate formulations of infliximab reduce inflammation in DSS induced murine model of colitis – A preliminary study. International Journal of Pharmaceutics, 2021, 604, 120717.	5.2	5
8	Presentation of the AGA Distinguished Achievement Award in Basic Science to Kim E. Barrett, PhD, AGAF. Gastroenterology, 2021, 161, 336-338.	1.3	0
9	The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiological Reports, 2020, 8, e14456.	1.7	71
10	Ursodeoxycholic acid: a promising therapeutic target for inflammatory bowel diseases?. American Journal of Physiology - Renal Physiology, 2019, 317, G872-G881.	3.4	22
11	The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing. American Journal of Physiology - Renal Physiology, 2018, 314, G378-G387.	3.4	47
12	Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews, 2018, 98, 1983-2023.	28.8	184
13	Decoding host–microbiota communication in the gut – now we're flying!. Journal of Physiology, 2017, 595, 417-418.	2.9	7
14	Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human βâ€defensinâ€1 and â€2 secretion by colonic epithelial cells. FASEB Journal, 2017, 31, 3848-3857.	0.5	21
15	Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. American Journal of Physiology - Renal Physiology, 2017, 312, G550-G558.	3.4	170
16	Characterization of AQPs in Mouse, Rat, and Human Colon and Their Selective Regulation by Bile Acids. Frontiers in Nutrition, 2016, 3, 46.	3.7	38
17	Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes. American Journal of Physiology - Renal Physiology, 2016, 311, G334-G341.	3.4	26
18	The Farnesoid X Receptor: Good for BAD. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 725-732.	4.5	51

STEPHEN J KEELY

#	Article	IF	CITATIONS
19	Fe(III) salEen derived Schiff base complexes as potential contrast agents. Inorganica Chimica Acta, 2015, 432, 258-266.	2.4	10
20	UDCA modulates monocyte/epithelial cell interactions. FASEB Journal, 2015, 29, 1005.1.	0.5	0
21	Bile acids regulate intestinal epithelial restitution: implications for pathogenesis and therapy of IBD. FASEB Journal, 2015, 29, 854.13.	0.5	0
22	Bile acids regulate colonic epithelial defensin secretion: implications for pathogenesis and therapy of inflammatory bowel disease. FASEB Journal, 2015, 29, 857.3.	0.5	0
23	Role of Bile Acids for Regulation of Aquaporins in Rodent Large Intestine. FASEB Journal, 2015, 29, 970.12.	0.5	0
24	Bile acids stimulate chloride secretion through CFTR and calcium-activated Clâ^' channels in Calu-3 airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L407-L418.	2.9	26
25	New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorganic and Medicinal Chemistry, 2014, 22, 256-268.	3.0	24
26	Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut, 2014, 63, 808-817.	12.1	61
27	Oxygen in the regulation of intestinal epithelial transport. Journal of Physiology, 2014, 592, 2473-2489.	2.9	46
28	The bile acid receptor, <scp>TGR</scp> 5, regulates basal and cholinergicâ€induced secretory responses in rat colon. Neurogastroenterology and Motility, 2013, 25, 708-711.	3.0	45
29	Ursodeoxycholic acid attenuates colonic epithelial secretory function. Journal of Physiology, 2013, 591, 2307-2318.	2.9	31
30	Ursodeoxycholic acid inhibits colonic mucosal cytokine release and prevents colitis in a mouse model of disease. FASEB Journal, 2013, 27, .	0.5	0
31	The G Proteinâ€coupled bile acid receptor, TGR5, is expressed on colonic epithelial cells and regulates ion transport. FASEB Journal, 2013, 27, 1162.10.	0.5	0
32	Epidermal growth factor chronically upregulates Ca ²⁺ â€dependent Cl ^{â^'} conductance and TMEM16A expression in intestinal epithelial cells. Journal of Physiology, 2012, 590, 1907-1920.	2.9	47
33	Epithelial acetylcholine – a new paradigm for cholinergic regulation of intestinal fluid and electrolyte transport. Journal of Physiology, 2011, 589, 771-772.	2.9	12
34	Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea. FASEB Journal, 2011, 25, 535-543.	0.5	8
35	Missing link identified: GpBAR1 is a neuronal bile acid receptor. Neurogastroenterology and Motility, 2010, 22, 711-717.	3.0	14
36	Apical leptin induces chloride secretion by intestinal epithelial cells and in a rat model of acute chemotherapy-induced colitis. American Journal of Physiology - Renal Physiology, 2010, 298, G714-G721.	3.4	14

STEPHEN J KEELY

#	Article	IF	CITATIONS
37	JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 298, G37-G44.	3.4	7
38	Physiological concentrations of bile acids downâ€regulate agonist induced secretion in colonic epithelial cells. Journal of Cellular and Molecular Medicine, 2009, 13, 2293-2303.	3.6	31
39	Bile acids in regulation of intestinal physiology. Current Gastroenterology Reports, 2009, 11, 375-382.	2.5	47
40	W1663 Farnesoid X Receptor Activation Downregulates Chloride Secretion in Colonic Epithelial Cells. Gastroenterology, 2009, 136, A-712-A-713.	1.3	1
41	Bradykinin regulates human colonic ion transport <i>in vitro</i> . British Journal of Pharmacology, 2008, 155, 558-566.	5.4	17
42	The Hydroxylase Inhibitor Dimethyloxalylglycine Is Protective in a Murine Model of Colitis. Gastroenterology, 2008, 134, 156-165.e1.	1.3	366
43	Induction of Na ⁺ /K ⁺ /2Cl ^{â~`} cotransporter expression mediates chronic potentiation of intestinal epithelial Cl ^{â~`} secretion by EGF. American Journal of Physiology - Cell Physiology, 2008, 294, C1362-C1370.	4.6	21
44	Hypertonic saline reduces neutrophil-epithelial interactions in vitro and gut tissue damage in a mouse model of colitis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1839-R1845.	1.8	6
45	Bile acid-induced secretion in polarized monolayers of T84 colonic epithelial cells: structure-activity relationships. American Journal of Physiology - Renal Physiology, 2007, 292, G290-G297.	3.4	58
46	The autonomic nervous system and inflammatory bowel disease. Autonomic Neuroscience: Basic and Clinical, 2007, 133, 104-114.	2.8	49
47	Integrative Physiology and Pathophysiology of Intestinal Electrolyte Transport. , 2006, , 1931-1951.		16
48	Transactivation of the epidermal growth factor receptor mediates muscarinic stimulation of focal adhesion kinase in intestinal epithelial cells. Journal of Cellular Physiology, 2005, 203, 103-110.	4.1	17
49	Gs Protein-coupled Receptor Agonists Induce Transactivation of the Epidermal Growth Factor Receptor in T84 Cells. Journal of Biological Chemistry, 2004, 279, 6271-6279.	3.4	55
50	Acute activation of Gq protein-coupled receptors elicits chronic inhibition of colonic epithelial ClÈ _i secretion. Gastroenterology, 2003, 124, A306.	1.3	1
51	p38 mitogen-activated protein kinase inhibits calcium-dependent chloride secretion in T ₈₄ colonic epithelial cells. American Journal of Physiology - Cell Physiology, 2003, 284, C339-C348.	4.6	45
52	Transactivation of the Epidermal Growth Factor Receptor in Colonic Epithelial Cells by Carbachol Requires Extracellular Release of Transforming Growth Factor-α. Journal of Biological Chemistry, 2002, 277, 42603-42612.	3.4	102
53	Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2001, 281, G129-G137.	3.4	11
54	Chloride Secretion by the Intestinal Epithelium: Molecular Basis and Regulatory Aspects. Annual Review of Physiology, 2000, 62, 535-572.	13.1	428

STEPHEN J KEELY

#	Article	IF	CITATIONS
55	Carbachol-stimulated Transactivation of Epidermal Growth Factor Receptor and Mitogen-activated Protein Kinase in T84 Cells Is Mediated by Intracellular Ca2+, PYK-2, and p60. Journal of Biological Chemistry, 2000, 275, 12619-12625.	3.4	132
56	Regulation of Chloride Secretion: Novel Pathways and Messengers. Annals of the New York Academy of Sciences, 2000, 915, 67-76.	3.8	31
57	ErbB2 and ErbB3 Receptors Mediate Inhibition of Calcium-dependent Chloride Secretion in Colonic Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 33449-33454.	3.4	42
58	Carbachol Stimulates Transactivation of Epidermal Growth Factor Receptor and Mitogen-activated Protein Kinase in T84Cells. Journal of Biological Chemistry, 1998, 273, 27111-27117.	3.4	147
59	Bioactivatable derivatives of 8-substituted cAMP-analogues. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 945-948.	2.2	12
60	Phosphatidylinositol 3-Kinase Mediates the Inhibitory Effect of Epidermal Growth Factor on Calcium-dependent Chloride Secretion. Journal of Biological Chemistry, 1996, 271, 26588-26595.	3.4	102
61	Regulation of ion transport by histamine in human colon. European Journal of Pharmacology, 1995, 279, 203-209.	3.5	52

62 Electrolyte Secretion and Absorption: Small Intestine and Colon., 0,, 330-367.

12