
## Harold A Scheraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417737/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field. Methods in Molecular<br>Biology, 2022, 2340, 79-104.                                                                                                                     | 0.4 | 1         |
| 2  | Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by<br>Coarse-Grained Molecular Dynamics. Journal of Chemical Theory and Computation, 2021, 17, 3203-3220.                                                | 2.3 | 11        |
| 3  | The structure of protein dynamic space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19938-19942.                                                                                                 | 3.3 | 10        |
| 4  | Curvature and Torsion of Protein Main Chain as Local Order Parameters of Protein Unfolding.<br>Journal of Physical Chemistry B, 2020, 124, 4391-4398.                                                                                            | 1.2 | 9         |
| 5  | PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Journal of Physical Chemistry B, 2020, 124, 974-989.                                                                                       | 1.2 | 7         |
| 6  | Assessing the One-Bond C <sub>α</sub> –H Spin–Spin Coupling Constants in Proteins: Pros and Cons of<br>Different Approaches. Journal of Physical Chemistry B, 2020, 124, 735-741.                                                                | 1.2 | 3         |
| 7  | New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain. Journal of Physical<br>Chemistry B, 2020, 124, 3855-3872.                                                                                                         | 1.2 | 4         |
| 8  | Outline of an experimental design aimed to detect protein A mirror image in solution. , 2019, 1, e2.                                                                                                                                             |     | 1         |
| 9  | Statistical Model To Decipher Protein Folding/Unfolding at a Local Scale. Journal of Physical<br>Chemistry B, 2018, 122, 3540-3549.                                                                                                              | 1.2 | 6         |
| 10 | From a Highly Disordered to a Metastable State: Uncovering Insights of α-Synuclein. ACS Chemical<br>Neuroscience, 2018, 9, 1051-1065.                                                                                                            | 1.7 | 22        |
| 11 | Lysosomal enzyme tripeptidyl peptidase 1 destabilizes fibrillar Aβ by multiple endoproteolytic cleavages<br>within the β-sheet domain. Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, 1493-1498. | 3.3 | 33        |
| 12 | Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins. Journal of Biomolecular Structure and Dynamics, 2018, 36, 561-574.               | 2.0 | 9         |
| 13 | A comprehensive analysis of the computed tautomer fractions of the imidazole ring of histidines in <i>Loligo vulgaris</i> . Journal of Biomolecular Structure and Dynamics, 2018, 36, 3094-3105.                                                 | 2.0 | 2         |
| 14 | A new protein nucleicâ€acid coarseâ€grained force field based on the UNRES and NARESâ€2P force fields.<br>Journal of Computational Chemistry, 2018, 39, 2360-2370.                                                                               | 1.5 | 16        |
| 15 | Dependence of the Formation of Tau and AÎ <sup>2</sup> Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of AÎ <sup>2</sup> . Journal of Physical Chemistry B, 2018, 122, 7049-7056.                                  | 1.2 | 22        |
| 16 | An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, 2018, 8, 9939.                                                                               | 1.6 | 19        |
| 17 | Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like<br>proteins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>1578-1583.                                | 3.3 | 24        |
| 18 | Limiting values of the one-bond C H spin-spin coupling constants of the imidazole ring of histidine at<br>high-pH. Journal of Molecular Structure, 2017, 1134, 576-581.                                                                          | 1.8 | 6         |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of<br>Amino Acid Side Chains in Water. VII. Charged–Hydrophobic/Polar and Polar–Hydrophobic/Polar Side<br>Chains. Journal of Physical Chemistry B, 2017, 121, 379-390. | 1.2 | 19        |
| 20 | Dynamics of Disulfide-Bond Disruption and Formation in the Thermal Unfolding of Ribonuclease A.<br>Journal of Chemical Theory and Computation, 2017, 13, 5721-5730.                                                                                                 | 2.3 | 15        |
| 21 | Maximum Likelihood Calibration of the UNRES Force Field for Simulation of Protein Structure and Dynamics. Journal of Chemical Information and Modeling, 2017, 57, 2364-2377.                                                                                        | 2.5 | 38        |
| 22 | Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. ACS Chemical Neuroscience, 2017, 8, 201-209.                                                                                                       | 1.7 | 32        |
| 23 | Eliminating a Protein Folding Intermediate by Tuning a Local Hydrophobic Contact. Journal of Physical<br>Chemistry B, 2017, 121, 3276-3284.                                                                                                                         | 1.2 | 5         |
| 24 | Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.<br>Bioinformatics, 2016, 32, 3270-3278.                                                                                                                            | 1.8 | 44        |
| 25 | Molecular dynamics of protein A and a WW domain with a united-residue model including hydrodynamic interaction. Journal of Chemical Physics, 2016, 144, 184110.                                                                                                     | 1.2 | 10        |
| 26 | George Hess: A scientific appreciation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1466-1467.                                                                                                                      | 3.3 | 0         |
| 27 | Global informatics and physical property selection in protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1808-1810.                                                                                     | 3.3 | 8         |
| 28 | Detection of methylation, acetylation and glycosylation of protein residues by<br>monitoring <sup>13</sup> C chemical-shift changes: A quantum-chemical study. PeerJ, 2016, 4, e2253.                                                                               | 0.9 | 6         |
| 29 | Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach. Journal of Chemical Physics, 2015, 143, 243111.                                                                                                         | 1.2 | 25        |
| 30 | Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from<br><i>S accharomyces cerevisiae</i> by all-atom and coarse-grained approaches. Proteins:<br>Structure, Function and Bioinformatics, 2015, 83, 1414-1426.           | 1.5 | 32        |
| 31 | Physics-Based Potentials for the Coupling between Backbone- and Side-Chain-Local Conformational<br>States in the United Residue (UNRES) Force Field for Protein Simulations. Journal of Chemical Theory<br>and Computation, 2015, 11, 817-831.                      | 2.3 | 39        |
| 32 | Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain<br>Models in Water. Journal of Physical Chemistry B, 2015, 119, 8526-8534.                                                                                          | 1.2 | 4         |
| 33 | My 65 years in protein chemistry. Quarterly Reviews of Biophysics, 2015, 48, 117-177.                                                                                                                                                                               | 2.4 | 9         |
| 34 | New Insights into Protein (Un)Folding Dynamics. Journal of Physical Chemistry Letters, 2015, 6, 1082-1086.                                                                                                                                                          | 2.1 | 20        |
| 35 | Alternative approach to protein structure prediction based on sequential similarity of physical properties. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5029-5032.                                                  | 3.3 | 23        |
| 36 | Preventing fibril formation of a protein by selective mutation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13549-13554.                                                                                            | 3.3 | 17        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Are accurate computations of the <sup>13</sup> C′ shielding feasible at the DFT level of theory?.<br>Journal of Computational Chemistry, 2014, 35, 309-312.                                                                                       | 1.5 | 2         |
| 38 | Kinks, loops, and protein folding, with protein A as an example. Journal of Chemical Physics, 2014, 140, 025101.                                                                                                                                  | 1.2 | 18        |
| 39 | Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18243-18248.       | 3.3 | 36        |
| 40 | Homolog detection using global sequence properties suggests an alternate view of structural<br>encoding in protein sequences. Proceedings of the National Academy of Sciences of the United States<br>of America, 2014, 111, 5225-5229.           | 3.3 | 17        |
| 41 | DNA Duplex Formation with a Coarse-Grained Model. Journal of Chemical Theory and Computation, 2014, 10, 5020-5035.                                                                                                                                | 2.3 | 39        |
| 42 | Revised Backbone-Virtual-Bond-Angle Potentials to Treat the <scp>l</scp> - and <scp>d</scp> -Amino<br>Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field. Journal of Chemical Theory<br>and Computation, 2014, 10, 2194-2203. | 2.3 | 16        |
| 43 | Accounting for a mirror-image conformation as a subtle effect in protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8458-8463.                                                          | 3.3 | 19        |
| 44 | Improvement of the Treatment of Loop Structures in the UNRES Force Field by Inclusion of Coupling between Backbone- and Side-Chain-Local Conformational States. Journal of Chemical Theory and Computation, 2013, 9, 4620-4632.                   | 2.3 | 30        |
| 45 | A generalized C-SFED continuum solvation free energy calculation model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E662-7.                                                                       | 3.3 | 9         |
| 46 | Local vs Global Motions in Protein Folding. Journal of Chemical Theory and Computation, 2013, 9, 2907-2921.                                                                                                                                       | 2.3 | 18        |
| 47 | Lessons from application of the UNRES force field to predictions of structures of CASP10 targets.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14936-14941.                                     | 3.3 | 62        |
| 48 | <i>Che</i> Shift-2: graphic validation of protein structures. Bioinformatics, 2012, 28, 1538-1539.                                                                                                                                                | 1.8 | 23        |
| 49 | Extension of UNRES Force Field to Treat Polypeptide Chains with <scp>d</scp> -Amino Acid Residues.<br>Journal of Chemical Theory and Computation, 2012, 8, 4746-4757.                                                                             | 2.3 | 20        |
| 50 | Effects of Mutation, Truncation, and Temperature on the Folding Kinetics of a WW Domain. Journal of Molecular Biology, 2012, 420, 350-365.                                                                                                        | 2.0 | 17        |
| 51 | Coexistence of Phases in a Protein Heterodimer. Journal of Chemical Physics, 2012, 137, 035101.                                                                                                                                                   | 1.2 | 20        |
| 52 | Anomalous diffusion and dynamical correlation between the side chains and the main chain of<br>proteins in their native state. Proceedings of the National Academy of Sciences of the United States of<br>America, 2012, 109, 10346-10351.        | 3.3 | 29        |
| 53 | Respice, Adspice, and Prospice. Annual Review of Biophysics, 2011, 40, 1-39.                                                                                                                                                                      | 4.5 | 8         |
| 54 | Towards Temperature Dependent Coarse-grained Potential of Side-chain Interactions for Protein                                                                                                                                                     |     | 3         |

Folding Simulations. , 2010, , .

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nonexponential decay of internal rotational correlation functions of native proteins and self-similar structural fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19844-19849.                                                                    | 3.3 | 28        |
| 56 | Investigation of Protein Folding by Coarse-Grained Molecular Dynamics with the UNRES Force Field.<br>Journal of Physical Chemistry A, 2010, 114, 4471-4485.                                                                                                                                                | 1.1 | 91        |
| 57 | Relation between Free Energy Landscapes of Proteins and Dynamics. Journal of Chemical Theory and Computation, 2010, 6, 583-595.                                                                                                                                                                            | 2.3 | 132       |
| 58 | Mechanism of Fiber Assembly: Treatment of AÎ <sup>2</sup> Peptide Aggregation with a Coarse-Grained<br>United-Residue Force Field. Journal of Molecular Biology, 2010, 404, 537-552.                                                                                                                       | 2.0 | 87        |
| 59 | How Adequate are One- and Two-Dimensional Free Energy Landscapes for Protein Folding Dynamics?.<br>Physical Review Letters, 2009, 102, 238102.                                                                                                                                                             | 2.9 | 48        |
| 60 | Exploring the parameter space of the coarseâ€grained UNRES force field by random search: Selecting a<br>transferable mediumâ€resolution force field. Journal of Computational Chemistry, 2009, 30, 2127-2135.                                                                                              | 1.5 | 64        |
| 61 | Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with α<br>and α+β Proteins. Journal of Chemical Theory and Computation, 2009, 5, 627-640.                                                                                                                   | 2.3 | 93        |
| 62 | Principal Component Analysis for Protein Folding Dynamics. Journal of Molecular Biology, 2009, 385,<br>312-329.                                                                                                                                                                                            | 2.0 | 331       |
| 63 | From helix–coil transitions to protein folding. Biopolymers, 2008, 89, 479-485.                                                                                                                                                                                                                            | 1.2 | 13        |
| 64 | How main-chains of proteins explore the free-energy landscape in native states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19708-19713.                                                                                                                   | 3.3 | 52        |
| 65 | Predicting Three-Dimensional Structures of Oligopeptides. Reviews in Computational Chemistry, 2007, , 73-142.                                                                                                                                                                                              | 1.5 | 27        |
| 66 | Modification and Optimization of the United-Residue (UNRES) Potential Energy Function for Canonical<br>Simulations. I. Temperature Dependence of the Effective Energy Function and Tests of the Optimization<br>Method with Single Training Proteins. Journal of Physical Chemistry B, 2007, 111, 260-285. | 1.2 | 184       |
| 67 | Protein-Folding Dynamics: Overview of Molecular Simulation Techniques. Annual Review of Physical Chemistry, 2007, 58, 57-83.                                                                                                                                                                               | 4.8 | 329       |
| 68 | Molecular Dynamics with the United-Residue Force Field:Â Ab Initio Folding Simulations of Multichain<br>Proteins. Journal of Physical Chemistry B, 2007, 111, 293-309.                                                                                                                                     | 1.2 | 46        |
| 69 | Predicting 13Cα chemical shifts for validation of protein structures. Journal of Biomolecular NMR, 2007, 38, 221-235.                                                                                                                                                                                      | 1.6 | 39        |
| 70 | A New Force Field (ECEPP-05) for Peptides, Proteins, and Organic Molecules. Journal of Physical Chemistry B, 2006, 110, 5025-5044.                                                                                                                                                                         | 1.2 | 111       |
| 71 | A Localized Specific Interaction Alters the Unfolding Pathways of Structural Homologues. Journal of the American Chemical Society, 2006, 128, 1204-1213.                                                                                                                                                   | 6.6 | 26        |
| 72 | HELIX-RANDOM COIL TRANSFORMATIONS IN DEUTERATED MACROMOLECULES*. Annals of the New York Academy of Sciences, 2006, 84, 608-616.                                                                                                                                                                            | 1.8 | 38        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | THROMBIN AND ITS INTERACTION WITH FIBRINOGEN*. Annals of the New York Academy of Sciences, 2006, 75, 189-194.                                                                                                                                   | 1.8 | 25        |
| 74 | THE EFFECT OF SOLUTES ON THE STRUCTURE OF WATER AND ITS IMPLICATIONS FOR PROTEIN STRUCTURE*.<br>Annals of the New York Academy of Sciences, 2006, 125, 253-276.                                                                                 | 1.8 | 43        |
| 75 | Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue<br>model of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of<br>America, 2005, 102, 2362-2367.       | 3.3 | 256       |
| 76 | Comparison of two approaches to potential of mean force calculations of hydrophobic association: particle insertion and weighted histogram analysis methods. Molecular Physics, 2005, 103, 3153-3167.                                           | 0.8 | 18        |
| 77 | Molecular Dynamics with the United-Residue Model of Polypeptide Chains. II. Langevin and<br>Berendsen-Bath Dynamics and Tests on Model α-Helical Systems. Journal of Physical Chemistry B, 2005,<br>109, 13798-13810.                           | 1.2 | 144       |
| 78 | Molecular Dynamics with the United-Residue Model of Polypeptide Chains. I. Lagrange Equations of<br>Motion and Tests of Numerical Stability in the Microcanonical Mode. Journal of Physical Chemistry B,<br>2005, 109, 13785-13797.             | 1.2 | 114       |
| 79 | The thrombin–fibrinogen interaction. Biophysical Chemistry, 2004, 112, 117-130.                                                                                                                                                                 | 1.5 | 83        |
| 80 | Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 2.<br>Off-Lattice Tests of the Method with Single Proteins. Journal of Physical Chemistry B, 2004, 108,<br>16934-16949.                         | 1.2 | 68        |
| 81 | Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 3. Use of Many Proteins in Optimization. Journal of Physical Chemistry B, 2004, 108, 16950-16959.                                               | 1.2 | 73        |
| 82 | Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization:<br>Nonbonded Potential Parameters for Amines, Imidazoles, Amides, and Carboxylic Acids. Journal of<br>Physical Chemistry B, 2004, 108, 12181-12196. | 1.2 | 19        |
| 83 | Dissimilarity in the Reductive Unfolding Pathways of Two Ribonuclease Homologues. Journal of<br>Molecular Biology, 2004, 338, 795-809.                                                                                                          | 2.0 | 31        |
| 84 | Paul J Flory — The man who laid the foundations of modern polymer science. Resonance, 2003, 8, 2-5.                                                                                                                                             | 0.2 | 0         |
| 85 | Amino Acid Residues at Proteinâ <sup>~</sup> 'Protein Interfaces:Â Why Is Propensity so Different from Relative<br>Abundance?. Journal of Physical Chemistry B, 2003, 107, 9929-9932.                                                           | 1.2 | 13        |
| 86 | Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization:Â<br>Nonbonded Potential Parameters for Hydrocarbons and Alcohols. Journal of Physical Chemistry B,<br>2003, 107, 7143-7154.                         | 1.2 | 24        |
| 87 | Adaptations of Metropolis Monte Carlo for Global Optimization in Treating Fluids, Crystals, and Structures of Peptides and Proteins. AlP Conference Proceedings, 2003, , .                                                                      | 0.3 | 0         |
| 88 | Comment on "Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence<br>of three-body effects and beyond―[J. Chem. Phys. 115, 1414 (2001)]. Journal of Chemical Physics, 2002, 116,<br>2665-2667.               | 1.2 | 19        |
| 89 | Formation of the Hydrophobic Core of Ribonuclease A through Sequential Coordinated<br>Conformational Transitionsâ€. Biochemistry, 2002, 41, 14225-14231.                                                                                        | 1.2 | 14        |
| 90 | Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 2002, 23, 28-34.                                                                                      | 1.5 | 22        |

| #   | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Helix–coil transitions re-visited. Biophysical Chemistry, 2002, 101-102, 255-265.                                                                                                                                                                                                   | 1.5 | 52        |
| 92  | Can cooperativity in hydrophobic association be reproduced correctly by implicit solvation models?.<br>International Journal of Quantum Chemistry, 2002, 88, 41-55.                                                                                                                 | 1.0 | 36        |
| 93  | Exact solutions for chemical bond orientations from residual dipolar couplings. Journal of Biomolecular NMR, 2002, 22, 137-151.                                                                                                                                                     | 1.6 | 31        |
| 94  | Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. Journal of Chemical Physics, 2001, 115, 2323-2347.                                                                           | 1.2 | 236       |
| 95  | Effect of Mutation of Proline 93 on Redox Unfolding/Folding of Bovine Pancreatic Ribonuclease A.<br>Biochemistry, 2001, 40, 8536-8541.                                                                                                                                              | 1.2 | 15        |
| 96  | Folding of a Disulfide-Bonded Protein Species with Free Thiol(s):Â Competition between<br>Conformational Folding and Disulfide Reshuffling in an Intermediate of Bovine Pancreatic<br>Ribonuclease Aâ€. Biochemistry, 2001, 40, 15002-15008.                                        | 1.2 | 22        |
| 97  | Coupling of Conformational Folding and Disulfide-Bond Reactions in Oxidative Folding of Proteins.<br>Biochemistry, 2001, 40, 9059-9064.                                                                                                                                             | 1.2 | 113       |
| 98  | Distributions of Intramolecular Distances in the Reduced and Denatured States of Bovine Pancreatic<br>Ribonuclease A. Folding Initiation Structures in the C-Terminal Portions of the Reduced Protein.<br>Biochemistry, 2001, 40, 105-118.                                          | 1.2 | 93        |
| 99  | Influence of lysine content and PH on the stability of alanine-based copolypeptides. Biopolymers, 2001, 58, 235-246.                                                                                                                                                                | 1.2 | 28        |
| 100 | Influence of lysine content and PH on the stability of alanineâ€based copolypeptides. Biopolymers, 2001, 58, 235-246.                                                                                                                                                               | 1.2 | 2         |
| 101 | Hierarchical energy-based approach to protein-structure prediction: Blind-test evaluation with CASP3 targets. International Journal of Quantum Chemistry, 2000, 77, 90-117.                                                                                                         | 1.0 | 36        |
| 102 | Molecular simulation study of cooperativity in hydrophobic association. Protein Science, 2000, 9, 1235-1245.                                                                                                                                                                        | 3.1 | 90        |
| 103 | Formation of native structure by intermolecular thiol-disulfide exchange reactions without oxidants in the folding of bovine pancreatic ribonuclease A. FEBS Letters, 2000, 471, 177-181.                                                                                           | 1.3 | 12        |
| 104 | Acceleration of oxidative folding of bovine pancreatic ribonuclease A by anion-induced stabilization and formation of structured native-like intermediates. FEBS Letters, 2000, 472, 67-72.                                                                                         | 1.3 | 12        |
| 105 | Disulfide Bonds and Protein Foldingâ€. Biochemistry, 2000, 39, 4207-4216.                                                                                                                                                                                                           | 1.2 | 556       |
| 106 | Reply to "Comment on â€~Crystal Structure Prediction by Global Optimization as a Tool for Evaluating<br>Potentials: Role of the Dipole Moment Correction Term in Successful Predictions'―by B. P. van Eijck<br>and J. Kroon. Journal of Physical Chemistry B, 2000, 104, 8090-8092. | 1.2 | 8         |
| 107 | Ion Pair Interactions in Aqueous Solution:Â Self-Consistent Reaction Field (SCRF) Calculations with<br>Some Explicit Water Molecules. Journal of Physical Chemistry A, 2000, 104, 6505-6509.                                                                                        | 1.1 | 37        |
| 108 | Oxidative Folding of Proteins. Accounts of Chemical Research, 2000, 33, 805-812.                                                                                                                                                                                                    | 7.6 | 209       |

| #   | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Solution NMR evidence for a cis Tyrâ€Ala peptide group in the structure of [Pro93Ala] bovine pancreatic<br>ribonuclease A. Protein Science, 2000, 9, 421-426.                                                                                                                                                  | 3.1 | 10        |
| 110 | Hierarchical energy-based approach to protein-structure prediction: Blind-test evaluation with CASP3 targets. , 2000, 77, 90.                                                                                                                                                                                  |     | 1         |
| 111 | Prediction of protein structure using a knowledge-based off-lattice united-residue force field and global optimization methods. Theoretical Chemistry Accounts, 1999, 101, 16-20.                                                                                                                              | 0.5 | 25        |
| 112 | Conformational space annealing by parallel computations: Extensive conformational search of<br>Met-enkephalin and of the 20-residue membrane-bound portion of melittin. International Journal of<br>Quantum Chemistry, 1999, 75, 255-265.                                                                      | 1.0 | 77        |
| 113 | Flexible docking simulations: Scaled collective variable Monte Carlo minimization approach using<br>Bezier splines, and comparison with a standard Monte Carlo algorithm. Journal of Computational<br>Chemistry, 1999, 20, 244-252.                                                                            | 1.5 | 23        |
| 114 | Prodock: Software package for protein modeling and docking. Journal of Computational Chemistry, 1999, 20, 412-427.                                                                                                                                                                                             | 1.5 | 98        |
| 115 | Exact analytical loop closure in proteins using polynomial equations. Journal of Computational Chemistry, 1999, 20, 819-844.                                                                                                                                                                                   | 1.5 | 94        |
| 116 | Calculation of protein conformation by global optimization of a potential energy function. Proteins:<br>Structure, Function and Bioinformatics, 1999, 37, 204-208.                                                                                                                                             | 1.5 | 96        |
| 117 | New general approach for determining the solution structure of a ligand bound weakly to a receptor:<br>structure of a fibrinogen A?-like peptide bound to thrombin(S195A) obtained using NOE distance<br>constraints and an ECEPP/3 flexible docking program. , 1999, 34, 29-48.                               |     | 21        |
| 118 | Global Optimization of Clusters, Crystals, and Biomolecules. Science, 1999, 285, 1368-1372.                                                                                                                                                                                                                    | 6.0 | 995       |
| 119 | Effect of protein disulfide isomerase on the regeneration of bovine ribonuclease A with dithiothreitol. FEBS Letters, 1999, 456, 143-145.                                                                                                                                                                      | 1.3 | 10        |
| 120 | Two new structured intermediates in the oxidative folding of RNase A. FEBS Letters, 1999, 460, 477-479.                                                                                                                                                                                                        | 1.3 | 45        |
| 121 | Conformational Unfolding Studies of Three-Disulfide Mutants of Bovine Pancreatic Ribonuclease A and the Coupling of Proline Isomerization to Disulfide Redox Reactions. Biochemistry, 1999, 38, 2805-2815.                                                                                                     | 1.2 | 34        |
| 122 | Comparison of Local and Global Stability of an Analogue of a Disulfide-Folding Intermediate with<br>Those of the Wild-Type Protein in Bovine Pancreatic Ribonuclease A:Â Identification of Specific Regions<br>of Stable Structure along the Oxidative Folding Pathwayâ€. Biochemistry, 1999, 38, 16432-16442. | 1.2 | 15        |
| 123 | Distribution of Disulfide Bonds in the Two-Disulfide Intermediates in the Regeneration of Bovine<br>Pancreatic Ribonuclease A:  Further Insights into the Folding Process. Biochemistry, 1999, 38, 7284-7293.                                                                                                  | 1.2 | 52        |
| 124 | Calculation of protein conformation by global optimization of a potential energy function. Proteins:<br>Structure, Function and Bioinformatics, 1999, Suppl 3, 204-8.                                                                                                                                          | 1.5 | 23        |
| 125 | Thrombin specificity: further evidence for the importance of the beta-insertion loop and Trp96.<br>Implications of the hydrophobic interaction between Trp96 and Pro60B Pro60C for the activity of<br>thrombin. The Protein Journal, 1998, 17, 197-208.                                                        | 1.1 | 5         |
| 126 | Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. , 1998, 46, 103-115.                                                                                                                                                                           |     | 73        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | New developments of the electrostatically driven monte carlo method: Test on the membrane-bound portion of melittin. , 1998, 46, 117-126.                                                                                                                                    |     | 49        |
| 128 | B-spline method for energy minimization in grid-based molecular mechanics calculations. Journal of Computational Chemistry, 1998, 19, 71-85.                                                                                                                                 | 1.5 | 23        |
| 129 | Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A. Protein Science, 1998, 7, 1255-1258.                                                                                                                           | 3.1 | 39        |
| 130 | Diffusion Equation and Distance Scaling Methods of Global Optimization:Â Applications to Crystal<br>Structure Prediction. Journal of Physical Chemistry A, 1998, 102, 2904-2918.                                                                                             | 1.1 | 46        |
| 131 | Regeneration of Bovine Pancreatic Ribonuclease A:  Identification of Two Nativelike Three-Disulfide<br>Intermediates Involved in Separate Pathways. Biochemistry, 1998, 37, 3760-3766.                                                                                       | 1.2 | 100       |
| 132 | Computation of the Structure-Dependent pKaShifts in a Polypentapeptide of the<br>Poly[fv(IPGVG),fE(IPGEG)] Family. Journal of Physical Chemistry B, 1998, 102, 3065-3067.                                                                                                    | 1.2 | 10        |
| 133 | Regeneration of Three-Disulfide Mutants of Bovine Pancreatic Ribonuclease A Missing the 65â <sup>~,</sup> 72<br>Disulfide Bond:A Characterization of a Minor Folding Pathway of Ribonuclease A and Kinetic Roles of<br>Cys65 and Cys72â€. Biochemistry, 1998, 37, 4490-4501. | 1.2 | 54        |
| 134 | Theory of Two-State Cooperative Folding of Proteins. Accounts of Chemical Research, 1998, 31, 433-440.                                                                                                                                                                       | 7.6 | 31        |
| 135 | Characterization of Multiple Reduction Pathways of Proteins in the Presence of a Denaturant.<br>Journal of the American Chemical Society, 1998, 120, 5806-5807.                                                                                                              | 6.6 | 6         |
| 136 | Kinetic Folding Pathway of a Three-Disulfide Mutant of Bovine Pancreatic Ribonuclease A Missing the<br>[40â~'95] Disulfide Bondâ€. Biochemistry, 1998, 37, 7561-7571.                                                                                                        | 1.2 | 46        |
| 137 | An Unusual Adduct of Dithiothreitol with a Pair of Cysteine Residues of a Protein as a Stable Folding<br>Intermediate. Journal of the American Chemical Society, 1998, 120, 2668-2669.                                                                                       | 6.6 | 15        |
| 138 | Regeneration of Bovine Pancreatic Ribonuclease A:  Detailed Kinetic Analysis of Two Independent<br>Folding Pathways. Biochemistry, 1998, 37, 3767-3776.                                                                                                                      | 1.2 | 83        |
| 139 | Theory of Hydrophobic Interactions. Journal of Biomolecular Structure and Dynamics, 1998, 16, 447-460.                                                                                                                                                                       | 2.0 | 76        |
| 140 | Macromolecular conformational dynamics in torsional angle space. Journal of Chemical Physics, 1998, 108, 271-286.                                                                                                                                                            | 1.2 | 50        |
| 141 | Brownian dynamics simulations of protein folding. Journal of Chemical Physics, 1998, 108, 287-300.                                                                                                                                                                           | 1.2 | 40        |
| 142 | Use of sequence-specific tri-block copolymers to determine the helix-forming tendencies of amino acids. Biopolymers, 1998, 39, 531-536.                                                                                                                                      | 1.2 | 7         |
| 143 | Characterization of foldable protein models: Thermodynamics, folding kinetics and force field.<br>Journal of Chemical Physics, 1997, 107, 8089-8102.                                                                                                                         | 1.2 | 21        |
| 144 | Kinetic Studies of the Regeneration of Recombinant Hirudin Variant 1 with Oxidized and Reduced<br>Dithiothreitolâ€. Biochemistry, 1997, 36, 2154-2165.                                                                                                                       | 1.2 | 29        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Regeneration Studies of an Analog of Ribonuclease A Missing Disulfide Bonds 65â^'72 and 40â^'95.<br>Biochemistry, 1997, 36, 13068-13076.                                                                                                                     | 1.2 | 15        |
| 146 | A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent. Journal of Computational Chemistry, 1997, 18, 569-583.                                                                                         | 1.5 | 118       |
| 147 | An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the Poisson-Boltzmann equation. Journal of Computational Chemistry, 1997, 18, 1072-1078.                                                                          | 1.5 | 7         |
| 148 | Role of Non-Native Aromatic and Hydrophobic Interactions in the Folding of Hen Egg White Lysozyme.<br>Biochemistry, 1996, 35, 13797-13807.                                                                                                                   | 1.2 | 101       |
| 149 | Kinetic and Thermodynamic Studies of the Folding/Unfolding of a Tryptophan-Containing Mutant of<br>Ribonuclease Aâ€. Biochemistry, 1996, 35, 12978-12992.                                                                                                    | 1.2 | 43        |
| 150 | Structure of a Hydrophobically Collapsed Intermediate on the Conformational Folding Pathway of<br>Ribonuclease A Probed by Hydrogenâ^'Deuterium Exchangeâ€. Biochemistry, 1996, 35, 11734-11746.                                                             | 1.2 | 63        |
| 151 | Folding and Unfolding Kinetics of the Proline-to-Alanine Mutants of Bovine Pancreatic Ribonuclease<br>A. Biochemistry, 1996, 35, 1548-1559.                                                                                                                  | 1.2 | 99        |
| 152 | The Role of the Insertion Loop around Tryptophan 148 in the Activity of Thrombinâ€,‡. Biochemistry,<br>1996, 35, 4427-4433.                                                                                                                                  | 1.2 | 27        |
| 153 | Nature of the Unfolded State of Ribonuclease A:Â Effect of Cisâ^'Trans Xâ^'Pro Peptide Bond<br>Isomerizationâ€. Biochemistry, 1996, 35, 11719-11733.                                                                                                         | 1.2 | 64        |
| 154 | Circular Dichroism Evidence for the Presence of Burst-Phase Intermediates on the Conformational<br>Folding Pathway of Ribonuclease Aâ€. Biochemistry, 1996, 35, 10125-10133.                                                                                 | 1.2 | 49        |
| 155 | Determination of Potential Parameters for Amino Acid Zwitterions. The Journal of Physical Chemistry, 1996, 100, 17670-17677.                                                                                                                                 | 2.9 | 14        |
| 156 | Nonrandom Distribution of the One-Disulfide Intermediates in the Regeneration of Ribonuclease Aâ€.<br>Biochemistry, 1996, 35, 6406-6417.                                                                                                                     | 1.2 | 88        |
| 157 | Effects on protein structure and function of replacing tryptophan with 5-hydroxytryptophan:<br>Single-tryptophan mutants of the N-terminal domain of the bacteriophage λ repressor. The Protein<br>Journal, 1996, 15, 77-86.                                 | 1.1 | 2         |
| 158 | State of aggregation of recombinant hirudin in solution under physiological conditions. The Protein<br>Journal, 1996, 15, 751-753.                                                                                                                           | 1.1 | 4         |
| 159 | From secondary structure to three-dimensional structure: Improved dihedral angle probability distribution function for use with energy searches for native structures of polypeptides and proteins. Journal of Computational Chemistry, 1996, 17, 1453-1480. | 1.5 | 4         |
| 160 | An efficient, differentiable hydration potential for peptides and proteins. Journal of Computational Chemistry, 1996, 17, 1549-1558.                                                                                                                         | 1.5 | 49        |
| 161 | Computational study of packing a collagen-like molecule: Quasi-hexagonal vs "Smith―collagen<br>microfibril model. , 1996, 40, 595-607.                                                                                                                       |     | 14        |
| 162 | Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator. Protein Science, 1996, 5, 1800-1815.                                                                                                                  | 3.1 | 72        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Optimizing Potential Functions for Protein Folding. The Journal of Physical Chemistry, 1996, 100, 14540-14548.                                                                                                                                            | 2.9 | 44        |
| 164 | Determination of net atomic charges using a modified partial equalization of orbital<br>electronegativity method. IV. Application to hypervalent sulfur- and phosphorus-containing<br>molecules. Journal of Computational Chemistry, 1995, 16, 1011-1026. | 1.5 | 19        |
| 165 | Simple global minimization algorithm for one-variable rational functions. Journal of Global Optimization, 1995, 6, 293-311.                                                                                                                               | 1.1 | 6         |
| 166 | Mechanism of reductive protein unfolding. Nature Structural and Molecular Biology, 1995, 2, 489-494.                                                                                                                                                      | 3.6 | 95        |
| 167 | The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A.<br>Nature Structural and Molecular Biology, 1995, 2, 495-503.                                                                                           | 3.6 | 69        |
| 168 | A Simple Functional Representation of Angular-Dependent Hydrogen-Bonded Systems. 1. Amide,<br>Carboxylic Acid, and Amide-Carboxylic Acid Pairs. The Journal of Physical Chemistry, 1995, 99, 3478-3486.                                                   | 2.9 | 30        |
| 169 | Determination of Nonbonded Potential Parameters for Peptides. The Journal of Physical Chemistry, 1995, 99, 13019-13027.                                                                                                                                   | 2.9 | 25        |
| 170 | Analysis of the Structure of Ribonuclease A in Native and Partially Denatured States by Time-Resolved<br>Nonradiative Dynamic Excitation Energy Transfer between Site-Specific Extrinsic Probes. Biochemistry,<br>1995, 34, 15965-15978.                  | 1.2 | 64        |
| 171 | Statistical thermodynamics of protein folding: Comparison of a meanâ€field theory with Monte Carlo<br>simulations. Journal of Chemical Physics, 1995, 102, 1334-1348.                                                                                     | 1.2 | 55        |
| 172 | Treatment of Hydration in Conformational Energy Calculations on Polypeptides and Proteins. ACS Symposium Series, 1994, , 360-370.                                                                                                                         | 0.5 | 4         |
| 173 | A rapid and efficient algorithm for packing polypeptide chains by energy minimization. Journal of<br>Computational Chemistry, 1994, 15, 1403-1413.                                                                                                        | 1.5 | 13        |
| 174 | An algorithm for packing regular multistrand polypeptide structures by energy minimization. Journal of Computational Chemistry, 1994, 15, 1414-1428.                                                                                                      | 1.5 | 8         |
| 175 | The effect of theL-azetidine-2-carboxylic acid residue on protein conformation. IV. Local substitutions in the collagen triple helix. Biopolymers, 1994, 34, 51-60.                                                                                       | 1.2 | 22        |
| 176 | Analyzing the normal mode dynamics of macromolecules by the component synthesis method: Residue clustering and multiple-component approach. Biopolymers, 1994, 34, 321-335.                                                                               | 1.2 | 13        |
| 177 | Structural Characterization of a Three-Disulfide Intermediate of Ribonuclease a Involved in both the Folding and Unfolding Pathways. Biochemistry, 1994, 33, 10437-10449.                                                                                 | 1.2 | 50        |
| 178 | Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. III. Application to halogenated and aromatic molecules. Journal of Computational Chemistry, 1993, 14, 1482-1490.                           | 1.5 | 29        |
| 179 | Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent.<br>Biochemistry, 1993, 32, 2690-2697.                                                                                                                 | 1.2 | 60        |
| 180 | Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry, 1993, 32, 2680-2689.                                                                                                                                         | 1.2 | 68        |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Regeneration of bovine pancreatic ribonuclease A. 4. Temperature dependence of the regeneration rate. Biochemistry, 1993, 32, 2698-2703.                                                                                                                                                                   | 1.2 | 51        |
| 182 | An empirical method to calculate average molecular polarizabilities from the dependence of effective atomic polarizabilities on net atomic charge. Journal of the American Chemical Society, 1993, 115, 2005-2014.                                                                                         | 6.6 | 67        |
| 183 | Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry, 1993, 32, 2671-2679.                                                                                                                                                                                         | 1.2 | 149       |
| 184 | Monte Carlo simulation of the hardâ€sphere fluid with a highâ€temperature quantum correction in the region of the fluid–solid phase transition. Journal of Chemical Physics, 1992, 96, 7005-7009.                                                                                                          | 1.2 | 9         |
| 185 | Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions<br>for use in the ECEPP/3 algorithm, with application to proline-containing peptides. The Journal of<br>Physical Chemistry, 1992, 96, 6472-6484.                                                         | 2.9 | 664       |
| 186 | Some approaches to the multiple-minima problem in the calculation of polypeptide and protein structures. International Journal of Quantum Chemistry, 1992, 42, 1529-1536.                                                                                                                                  | 1.0 | 28        |
| 187 | Contribution of physical chemistry to an understanding of protein structure and function. Protein Science, 1992, 1, 691-693.                                                                                                                                                                               | 3.1 | 13        |
| 188 | Empirical solvation models in the context of conformational energy searches: Application to bovine pancreatic trypsin inhibitor. Proteins: Structure, Function and Bioinformatics, 1992, 14, 110-119.                                                                                                      | 1.5 | 63        |
| 189 | Standard-geometry chains fitted to X-ray derived structures: Validation of the rigid-geometry<br>approximation. II. Systematic searches for short loops in proteins: Applications to bovine pancreatic<br>ribonuclease A and human lysozyme. Journal of Computational Chemistry, 1992, 13, 329-350.        | 1.5 | 28        |
| 190 | The Multiple-Minima Problem in Protein Folding. AIP Conference Proceedings, 1991, , .                                                                                                                                                                                                                      | 0.3 | 1         |
| 191 | Standard-geometry chains fitted to X-ray derived structures: Validation of the rigid-geometry approximation. I. Chain closure through a limited search of ?loop? conformations. Journal of Computational Chemistry, 1991, 12, 505-526.                                                                     | 1.5 | 52        |
| 192 | A comparative study of the simulated-annealing and Monte Carlo-with-minimization approaches to the minimum-energy structures of polypeptides: [Met]-enkephalin. Journal of Computational Chemistry, 1991, 12, 594-605.                                                                                     | 1.5 | 152       |
| 193 | The Electrostatically Driven Monte Carlo method: Application to conformational analysis of decaglycine. Biopolymers, 1991, 31, 319-330.                                                                                                                                                                    | 1.2 | 20        |
| 194 | Conformational energy studies of β-sheets of model silk fibroin peptides. I. Sheets of poly(Ala-Gly)<br>chains. Biopolymers, 1991, 31, 1529-1541.                                                                                                                                                          | 1.2 | 194       |
| 195 | On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven monte carlo methods to bovine pancreatic trypsin inhibitor. Proteins: Structure, Function and Bioinformatics, 1991, 10, 188-198. | 1.5 | 33        |
| 196 | Energetics of the structure and chain tilting of antiparallel β-barrels in proteins. Proteins: Structure,<br>Function and Bioinformatics, 1990, 8, 14-22.                                                                                                                                                  | 1.5 | 22        |
| 197 | The effect of theL-azetidine-2-carboxylic acid residue on protein conformation. I. Conformations of the residue and of dipeptides. Biopolymers, 1990, 30, 951-959.                                                                                                                                         | 1.2 | 48        |
| 198 | The effect of theL-azetidine-2-carboxylic acid residue on protein conformation. III. Collagen-like poly(tripeptide)s. Biopolymers, 1990, 30, 967-974.                                                                                                                                                      | 1.2 | 22        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Protein structure prediction using a combination of sequence homology and global energy<br>minimization I. Global energy minimization of surface loops. Journal of Computational Chemistry,<br>1990, 11, 121-151.                                       | 1.5 | 66        |
| 200 | Variable step molecular dynamics: An exploratory technique for peptides with fixed geometry. Journal of Computational Chemistry, 1990, 11, 468-486.                                                                                                     | 1.5 | 55        |
| 201 | Dynamics of peptides with fixed geometry: Kinetic energy terms and potential energy derivatives as functions of dihedral angles. Journal of Computational Chemistry, 1990, 11, 487-492.                                                                 | 1.5 | 8         |
| 202 | Theoretical studies of protein conformation by means of energy computations. FASEB Journal, 1990, 4, 3189-3197.                                                                                                                                         | 0.2 | 26        |
| 203 | Monte Carlo recursion study of cluster formation from vapor. Journal of Chemical Physics, 1990, 92, 5499-5505.                                                                                                                                          | 1.2 | 9         |
| 204 | Vibrational quantum correction for the Lennardâ€Jones fluid: A formalism of effective intermolecular potentials depending on mass and temperature. Journal of Chemical Physics, 1990, 92, 3748-3755.                                                    | 1.2 | 6         |
| 205 | Free energy and stability of macromolecules studied by the double scanning simulation procedure.<br>Journal of Chemical Physics, 1990, 92, 1248-1257.                                                                                                   | 1.2 | 12        |
| 206 | Determination of net atomic charges using a modified partial equalization of orbital<br>electronegativity method. 2. Application to ionic and aromatic molecules as models for polypeptides.<br>The Journal of Physical Chemistry, 1990, 94, 4740-4746. | 2.9 | 81        |
| 207 | Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides. The Journal of Physical Chemistry, 1990, 94, 4732-4739.                  | 2.9 | 115       |
| 208 | Conformations of the central transforming region (Ile 55â€Met 67) of the p21 protein and their<br>relationship to activation of the protein. International Journal of Peptide and Protein Research, 1990,<br>36, 247-254.                               | 0.1 | 6         |
| 209 | Experimental and Theoretical Protein Folding. Journal of Biomolecular Structure and Dynamics, 1989, 6, 1039-1043.                                                                                                                                       | 2.0 | Ο         |
| 210 | Spatial geometric arrangements of disulfide-crosslinked loops in nonplanar proteins. Journal of<br>Computational Chemistry, 1989, 10, 287-294.                                                                                                          | 1.5 | 10        |
| 211 | Pattern recognition in the prediction of protein structure. I. Tripeptide conformational probabilities calculated from the amino acid sequence. Journal of Computational Chemistry, 1989, 10, 770-797.                                                  | 1.5 | 56        |
| 212 | Pattern recognition in the prediction of protein structure. II. Chain conformation from a probability-directed search procedure. Journal of Computational Chemistry, 1989, 10, 798-816.                                                                 | 1.5 | 40        |
| 213 | Pattern recognition in the prediction of protein structure. III. An importance-sampling minimization procedure. Journal of Computational Chemistry, 1989, 10, 817-831.                                                                                  | 1.5 | 35        |
| 214 | Free energy of hydration of collagen models and the enthalpy of the transition between the triple-helical coiled-coil and single-stranded conformations. Biopolymers, 1989, 28, 1573-1584.                                                              | 1.2 | 15        |
| 215 | Formation of local structures in protein folding. Accounts of Chemical Research, 1989, 22, 70-76.                                                                                                                                                       | 7.6 | 105       |
| 216 | Correlation of βâ€bend conformations of tetrapeptides with their activities in CD4â€receptor binding assays. International Journal of Peptide and Protein Research, 1989, 34, 325-332.                                                                  | 0.1 | 17        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Effect of sequence-specific interactions on the stability of helical conformations in polypeptides.<br>Biopolymers, 1988, 27, 41-58.                                                                                                                                              | 1.2 | 42        |
| 218 | Stability of polypeptide conformational states. II. Folding of a polypeptide chain by the scanning simulation method, and calculation of the free energy of the statistical coil. Biopolymers, 1988, 27, 1189-1204.                                                               | 1.2 | 23        |
| 219 | On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method?tests on poly(L-alanine). Biopolymers, 1988, 27, 1283-1303.                                                                                     | 1.2 | 161       |
| 220 | Monte Carlo simulation of the hardâ€sphere fluid with quantum correction and estimate of its free energy. Journal of Chemical Physics, 1988, 88, 3923-3933.                                                                                                                       | 1.2 | 32        |
| 221 | Variable-Target-Function and Build-up Procedures for the Calculation of Protein Conformation.<br>Application to Bovine Pancreatic Trypsin Inhibitor Using Limited Simulated Nuclear Magnetic<br>Resonance Data. Journal of Biomolecular Structure and Dynamics, 1988, 5, 757-784. | 2.0 | 49        |
| 222 | Calculation of Protein Conformation by the Build-up Procedure. Application to Bovine Pancreatic<br>Trypsin Inhibitor Using Limited Simulated Nuclear Magnetic Resonance Data. Journal of Biomolecular<br>Structure and Dynamics, 1988, 5, 705-755.                                | 2.0 | 62        |
| 223 | On the multiple-minima problem in the conformational analysis of polypeptides. I. Backbone degrees of freedom for a perturbed α-helix. Biopolymers, 1987, 26, S33-S58.                                                                                                            | 1.2 | 63        |
| 224 | Helix-coil transition theory including long-range electrostatic interactions: Application to globular proteins. Biopolymers, 1987, 26, 351-371.                                                                                                                                   | 1.2 | 57        |
| 225 | Correlation between computed conformational properties of cytochromec peptides and their antigenicity in a T-lymphocyte proliferation assay. Biopolymers, 1987, 26, 373-386.                                                                                                      | 1.2 | 8         |
| 226 | Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. III.<br>Probable and average conformations of enkephalin. Biopolymers, 1987, 26, 1125-1162.                                                                                         | 1.2 | 53        |
| 227 | Conformational constraints of amino acid side chains in $\hat{I}\pm$ -helices. Biopolymers, 1987, 26, 1273-1286.                                                                                                                                                                  | 1.2 | 56        |
| 228 | Proline-induced constraints in α-helices. Biopolymers, 1987, 26, 1587-1600.                                                                                                                                                                                                       | 1.2 | 110       |
| 229 | Low-energy conformations of two lysine-containing tetrapeptides of collagen: Implications for posttranslational lysine hydroxylation. Biopolymers, 1987, 26, 1781-1788.                                                                                                           | 1.2 | 6         |
| 230 | Chemical Basis of Thrombin Interactions with Fibrinogen. Annals of the New York Academy of Sciences, 1986, 485, 124-133.                                                                                                                                                          | 1.8 | 28        |
| 231 | Conformational Analysis of Polypeptides and Proteins for the Study of Protein Folding, Molecular<br>Recognition, and Molecular Design. Israel Journal of Chemistry, 1986, 27, 144-155.                                                                                            | 1.0 | 2         |
| 232 | Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. II.<br>average backbone structure of enkephalin. Biopolymers, 1986, 25, 1547-1563.                                                                                                  | 1.2 | 44        |
| 233 | Spatial geometric arrangements of disulfide-crosslinked loops in proteins. Journal of Computational Chemistry, 1986, 7, 67-88.                                                                                                                                                    | 1.5 | 33        |
| 234 | Comparison of intramolecular and intermolecular reactions in protein folding. The Protein Journal, 1986, 5, 29-49.                                                                                                                                                                | 1.1 | 3         |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Computer simulation of the entropy of continuum chain models: The twoâ€dimensional freely jointed chain of hard disks. Journal of Chemical Physics, 1986, 84, 6369-6375.                                                                | 1.2 | 17        |
| 236 | Deamidation of the asparaginylâ€glycyl sequence. International Journal of Peptide and Protein Research, 1986, 28, 79-84.                                                                                                                | 0.1 | 116       |
| 237 | Role of interstrand loops in the formation of intramolecular cross-β-sheets by homopolymino acids.<br>Biopolymers, 1985, 24, 565-579.                                                                                                   | 1.2 | 16        |
| 238 | Energetics of multihelix interactions in protein folding: Application to myoglobin. Biopolymers, 1985, 24, 1271-1291.                                                                                                                   | 1.2 | 22        |
| 239 | Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. I.<br>Backbone structure of enkephalin. Biopolymers, 1985, 24, 1391-1436.                                                                 | 1.2 | 137       |
| 240 | Use of buildup and energy-minimization procedures to compute low-energy structures of the backbone of enkephalin. Biopolymers, 1985, 24, 1437-1447.                                                                                     | 1.2 | 133       |
| 241 | Resolution enhancement in spectroscopy by maximum entropy fourier self-deconvolution, with applications to Raman spectra of peptides and proteins. Journal of Raman Spectroscopy, 1985, 16, 337-349.                                    | 1.2 | 30        |
| 242 | β-Bend conformation of CH3CO-Pro-Pro-Gly-Pro-NHCH3: Implications for posttranslational proline hydroxylation in collagen. Biopolymers, 1984, 23, 1193-1206.                                                                             | 1.2 | 14        |
| 243 | Conversion from a virtual-bond chain to a complete polypeptide backbone chain. Biopolymers, 1984, 23, 1207-1224.                                                                                                                        | 1.2 | 54        |
| 244 | Matrix formulation of the transition from a statistical coil to an intramolecular antiparallel β sheet.<br>Biopolymers, 1984, 23, 1701-1724.                                                                                            | 1.2 | 43        |
| 245 | Molecular theory of the helix-coil transition in polyamino acids. V. Explanation of the different conformational behavior of valine, isoleucine, and leucine in aqueous solution. Biopolymers, 1984, 23, 1961-1977.                     | 1.2 | 28        |
| 246 | Role of proline …ï,•proline interactions in the packing of collagenlike poly(tripeptide) triple helices.<br>Biopolymers, 1984, 23, 2781-2799.                                                                                           | 1.2 | 20        |
| 247 | Suppression of the statistical coil state during the ? ? ? transition in homopolypeptides. Biopolymers, 1984, 23, 2879-2890.                                                                                                            | 1.2 | 8         |
| 248 | Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-HO = C<br>hydrogen bonds from packing configurations. The Journal of Physical Chemistry, 1984, 88, 6231-6233.                               | 2.9 | 347       |
| 249 | Recent progress in the theoretical treatment of protein folding. Biopolymers, 1983, 22, 1-14.                                                                                                                                           | 1.2 | 89        |
| 250 | Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions,<br>and hydrogen bond interactions for the naturally occurring amino acids. The Journal of Physical<br>Chemistry, 1983, 87, 1883-1887. | 2.9 | 961       |
| 251 | Statistical and energetic analysis of sideâ€chain conformations in oligopeptides. International Journal of Peptide and Protein Research, 1983, 22, 1-15.                                                                                | 0.1 | 232       |
| 252 | Preferred conformation of the benzyloxycarbonylâ€amino group in peptides*. International Journal of<br>Peptide and Protein Research, 1983, 21, 163-181.                                                                                 | 0.1 | 96        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Acceleration of convergence in Monte Carlo simulations of aqueous solutions using the metropolis algorithm. Hydrophobic hydration of methane. Journal of Computational Chemistry, 1982, 3, 525-547.                             | 1.5 | 41        |
| 254 | Visualization of the nature of protein folding by a study of a distance constraint approach in two-dimensional models. Biopolymers, 1982, 21, 611-632.                                                                          | 1.2 | 14        |
| 255 | Conformational preferences of amino acid side chains in collagen. Biopolymers, 1982, 21, 1535-1555.                                                                                                                             | 1.2 | 23        |
| 256 | Conformational energy analysis of melanostatin. International Journal of Peptide and Protein Research, 1982, 19, 143-152.                                                                                                       | 0.1 | 10        |
| 257 | Solution conformations of oligomers of α â€aminoisobutyric acid°. International Journal of Peptide and<br>Protein Research, 1982, 20, 468-480.                                                                                  | 0.1 | 30        |
| 258 | Influence of interatomic interactions on the structure and stability of polypeptides and proteins.<br>Biopolymers, 1981, 20, 1877-1899.                                                                                         | 1.2 | 46        |
| 259 | SPECTROSCOPIC STUDY OF THE CONFORMATIONS OF PROLINE ONTAINING OLIGOPEPTIDES IN THE CRYSTALLINE STATE AND IN SOLUTION. International Journal of Peptide and Protein Research, 1981, 17, 297-315.                                 | 0.1 | 8         |
| 260 | Monte Carlo studies of oligopeptide conformation. Ferroelectrics, 1980, 30, 159-159.                                                                                                                                            | 0.3 | 0         |
| 261 | Phase transitions in synthetic polymers of amino acids, and their relation to protein folding.<br>Ferroelectrics, 1980, 30, 157-158.                                                                                            | 0.3 | 1         |
| 262 | CONFORMATIONAL STUDIES OF SOMATOSTATIN AND SELECTED ANALOGUES BY RAMAN SPECTROSCOPY.<br>International Journal of Peptide and Protein Research, 1980, 15, 355-364.                                                               | 0.1 | 11        |
| 263 | PREFERRED CONFORMATION OF THE <i>tert</i> â€BUTOXYCARBONYLAMINO GROUP IN PEPTIDES.<br>International Journal of Peptide and Protein Research, 1980, 16, 156-172.                                                                 | 0.1 | 158       |
| 264 | CONFORMATIONALSTUDY OF [LEU <sup>5</sup> ] $\hat{a} \in \mathbb{E}$ NKEPHALIN BY LASER RAMAN SPECTROSCOPY.<br>International Journal of Peptide and Protein Research, 1980, 16, 173-182.                                         | 0.1 | 37        |
| 265 | Model for the conformational analysis of hydrated peptides. Effect of hydration on the conformational stability of the terminally blocked residues of the 20 naturally occurring amino acids. Biopolymers, 1979, 18, 1565-1610. | 1.2 | 101       |
| 266 | Influence of hydration on the conformational stability and formation of bends in terminally blocked dipeptides. Biopolymers, 1979, 18, 1611-1634.                                                                               | 1.2 | 29        |
| 267 | Influence of local interactions on protein structure. II. Conformational energy studies<br>ofN-acetyl-N?-methylamides of Ala-X and X-Ala dipeptides. Biopolymers, 1978, 17, 1849-1869.                                          | 1.2 | 42        |
| 268 | Influence of local interactions on protein structure. III. Conformational energy studies of N-acety-N?-methylamides of Cly-X and X-Cly dipeptides. Biopolymers, 1978, 17, 1871-1884.                                            | 1.2 | 37        |
| 269 | Influence of local interactions on protein structure. IV. Conformational energy studies<br>ofN-acetyl-N?-mehylamides of Ser-X- and X-Ser dipeptides. Biopolymers, 1978, 17, 1885-1890.                                          | 1.2 | 23        |
| 270 | Protein folding. Quarterly Reviews of Biophysics, 1977, 10, 239-352.                                                                                                                                                            | 2.4 | 276       |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Influence of local interactions on protein structure. I. Conformational energy studies<br>ofN-acetyl-N?-methylamides of pro-X and X-pro dipeptides. Biopolymers, 1977, 16, 811-843.                                                                                           | 1.2 | 262       |
| 272 | Calorimetric measurement of enthalpy change in the isothermal helix-coil transition of poly(L-ornithine) in aqueous solution. Biopolymers, 1976, 15, 1795-1813.                                                                                                               | 1.2 | 12        |
| 273 | Conformational energy calculations of enzyme-substrate complexes of lysozyme. I. Energy minimization of monosaccharide and oligosaccharide inhibitors and substrates of lysozyme. Biopolymers, 1976, 15, 2485-2521.                                                           | 1.2 | 58        |
| 274 | SEARCH FOR LOWâ€ENERGY CONFORMATIONS OF A NEUROTOXIC PROTEIN BY MEANS OF PREDICTIVE RULES, TESTS FOR HARDâ€SPHERE OVERLAPS, AND ENERGY MINIMIZATION*. International Journal of Peptide and Protein Research, 1976, 8, 237-252.                                                | 0.1 | 11        |
| 275 | Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. The Journal of Physical Chemistry, 1975, 79, 2361-2381. | 2.9 | 1,563     |
| 276 | Stable conformations of dipeptides. Biopolymers, 1973, 12, 2177-2183.                                                                                                                                                                                                         | 1.2 | 50        |
| 277 | Energy Parameters in Polypeptides. VI. Conformational Energy Analysis of the Nâ€Acetyl N′â€Methyl Amides<br>of the Twenty Naturally Occurring Amino Acids. Israel Journal of Chemistry, 1973, 11, 121-152.                                                                    | 1.0 | 145       |
| 278 | CONFORMATIONAL ENERGY CALCULATIONS OF ENZYMEâ€SUBSTRATE INTERACTIONS. I. Computation of Preferred Conformations of Some Substrates of αâ€Chymotrypsin. International Journal of Peptide and Protein Research, 1972, 4, 187-200.                                               | 0.1 | 22        |
| 279 | CONFORMATIONAL ENERGY CALCULATIONS OF ENZYMEâ€SUBSTRATE INTERACTIONS. II. Computation of the<br>Binding Energy for Substrates in the Active Site of αâ€Chymotrypsin. International Journal of Peptide and<br>Protein Research, 1972, 4, 201-219.                              | 0.1 | 36        |
| 280 | Calorimetric measurement of enthalpy change in the isothermal helix-coil transition of poly-L-lysine in aqueous solution. Biopolymers, 1971, 10, 657-680.                                                                                                                     | 1.2 | 111       |
| 281 | Molecular Theory of the Helix–Coil Transition in Polyamino Acids. III. Evaluation and Analysis of s and<br>Ïf for Polyglycine and Polyâ€lâ€alanine in Water. Journal of Chemical Physics, 1971, 54, 4489-4503.                                                                | 1.2 | 58        |
| 282 | Effect of side-chain hydrophobic bonding on the stability of homopolyamino acid ?-helices:<br>Conformational studies of poly-L-leucine in water. Biopolymers, 1970, 9, 749-764.                                                                                               | 1.2 | 48        |
| 283 | Molecular Theory of the Helixâ€Coil Transition in Polyamino Acids. II. Numerical Evaluation of s and σ<br>for Polyglycine and Polyâ€lâ€alanine in the Absence (for s and σ) and Presence (for σ) of Solvent. Journal of<br>Chemical Physics, 1970, 52, 2060-2079.             | 1.2 | 58        |
| 284 | Optical activity of single-stranded polydeoxyadenylic and polyriboadenylic acids; dependence of adenine chromophore cotton effects on polymer conformation. Biopolymers, 1969, 7, 395-409.                                                                                    | 1.2 | 79        |
| 285 | Helix sense of poly-Î <sup>3</sup> -p-chlorobenzylL-glutamate. Biopolymers, 1969, 7, 805-808.                                                                                                                                                                                 | 1.2 | 4         |
| 286 | The Lifson-Allegra theories of the helix-coil transition for random copolymers: Comparison with exact results and extension. Biopolymers, 1969, 7, 887-908.                                                                                                                   | 1.2 | 26        |
| 287 | Analysis of the Contribution of Internal Vibrations to the Statistical Weights of Equilibrium Conformations of Macromolecules. Journal of Chemical Physics, 1969, 51, 4751-4767.                                                                                              | 1.2 | 229       |
| 288 | Effect of side chains on the conformational energy and rotational strength of then-?*transition for some ?-helical poly-?-amino acids. Biopolymers, 1968, 6, 1531-1550.                                                                                                       | 1.2 | 52        |

| #   | Article                                                                                                                                                                                                                            | IF            | CITATIONS   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|
| 289 | Conformations of poly-L-valine in solution. Biopolymers, 1968, 6, 1551-1571.                                                                                                                                                       | 1.2           | 71          |
| 290 | Conformational Analysis of Macromolecules. V. Helical Structures of Polyâ€Lâ€aspartic Acid and<br>Polyâ€Lâ€glutamic Acid, and Related Compounds. Journal of Chemical Physics, 1968, 49, 2713-2726.                                 | 1.2           | 149         |
| 291 | Contractility and Conformation. Journal of General Physiology, 1967, 50, 5-27.                                                                                                                                                     | 0.9           | 6           |
| 292 | Conformational Analysis of Macromolecules. IV. Helical Structures of Polyâ€Lâ€Alanine, Polyâ€Lâ€Valine,<br>Polyâ€Î²â€Methylâ€Lâ€Aspartate, Polyâ€Î³â€Methylâ€Lâ€Glutamate, and Polyâ€Lâ€Tyrosine. Journal of Chemica<br>4410-4426. | ll Pubzysics, | 196672, 46, |
| 293 | Anti-cooperative interactions in single-strand oligomers of deoxyriboadenylic acid. Biopolymers, 1967, 5, 403-422.                                                                                                                 | 1.2           | 41          |
| 294 | A Second Right-handed Helical Structure with the Parameters of the Pauling–Corey α-helix. Nature, 1967, 214, 363-365.                                                                                                              | 13.7          | 97          |
| 295 | Phase Transitions in One Dimension and the Helix—Coil Transition in Polyamino Acids. Journal of<br>Chemical Physics, 1966, 45, 1456-1463.                                                                                          | 1.2           | 270         |
| 296 | Conformational Analysis of Macromolecules. III. Helical Structures of Polyglycine and Poly‣â€Alanine.<br>Journal of Chemical Physics, 1966, 45, 2091-2101.                                                                         | 1.2           | 439         |
| 297 | Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons. Journal of Chemical Physics, 1966, 44, 3054-3069.                                                                        | 1.2           | 254         |
| 298 | Neighbor-neighbor interactions in single-strand polynucleotides: Optical rotatory dispersion studies of the ribonucleotide ApApCp. Biopolymers, 1966, 4, 33-41.                                                                    | 1.2           | 30          |
| 299 | Cooperative interactions in single-strand oligomers of adenylic acid. Biopolymers, 1966, 4, 223-235.                                                                                                                               | 1.2           | 144         |
| 300 | Conformational analysis of macromolecules. I. Ethane, propane,n-butane, andn-pentane. Biopolymers, 1966, 4, 237-238.                                                                                                               | 1.2           | 19          |
| 301 | Computation of the sterically allowed conformations of peptides. Biopolymers, 1966, 4, 369-407.                                                                                                                                    | 1.2           | 155         |
| 302 | Influence of flexibility on the energy contours of dipeptide maps. Biopolymers, 1966, 4, 709-712.                                                                                                                                  | 1.2           | 66          |
| 303 | Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids.<br>Biopolymers, 1966, 4, 887-904.                                                                                                  | 1.2           | 52          |
| 304 | Occurrence of a Phase Transition in Nucleic Acid Models. Journal of Chemical Physics, 1966, 45, 1464-1469.                                                                                                                         | 1.2           | 217         |
| 305 | Chemicalâ€ <del>S</del> hift Data for Water and Aqueous Solutions. Journal of Chemical Physics, 1966, 45, 3296-3298.                                                                                                               | 1.2           | 23          |
| 306 | Kinetics of the Helix—Coil Transition in Polyamino Acids. Journal of Chemical Physics, 1966, 45, 2071-2090.                                                                                                                        | 1.2           | 57          |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Statistical mechanics of noncovalent bonds in polyamino acids. VI. A simple model for side-chain<br>hydrogen bonds between helices. Biopolymers, 1965, 3, 357-367.                                                                                       | 1.2 | 5         |
| 308 | Statistical mechanics of noncovalent bonds in polyamino acids. VII. Fluorescence as an indication of conformation. Biopolymers, 1965, 3, 369-377.                                                                                                        | 1.2 | 7         |
| 309 | Statistical mechanics of noncovalent bonds in polyamino acids. VIII. Covalent loops in proteins.<br>Biopolymers, 1965, 3, 379-399.                                                                                                                       | 1.2 | 140       |
| 310 | Statistical mechanics of noncovalent bonds in polyamino acids. IX. The two-state theory of protein denaturation. Biopolymers, 1965, 3, 401-419.                                                                                                          | 1.2 | 55        |
| 311 | Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 1965, 3, 155-184.                                                                                                                | 1.2 | 149       |
| 312 | Statistical mechanics of noncovalent bonds in polyamino acids. I. Hydrogen bonding of solutes in water, and the binding of water to polypeptides. Biopolymers, 1965, 3, 275-282.                                                                         | 1.2 | 31        |
| 313 | Statistical mechanics of noncovalent bonds in polyamino acids. II. Combinatorial formulation for short chains, including hydrophobic bonding in random coil. Biopolymers, 1965, 3, 283-304.                                                              | 1.2 | 30        |
| 314 | Statistical mechanics of noncovalent bonds in polyamino acids. III. Interhelical hydrophobic bonds in short chains. Biopolymers, 1965, 3, 305-313.                                                                                                       | 1.2 | 18        |
| 315 | Statistical mechanics of noncovalent bonds in polyamino acids. IV. Matrix treatment of hydrophobic bonds in the random coil and of the helix-coil transition for chains of arbitrary length. Biopolymers, 1965, 3, 315-334.                              | 1.2 | 19        |
| 316 | Statistical mechanics of noncovalent bonds in polyamino acids. V. Treatment of long chains by the method of sequence-generating functions: Hydrophobic bonding in random coil, and interactions between helical segments. Biopolymers, 1965, 3, 335-355. | 1.2 | 17        |
| 317 | Comparison of Theories of the Helix—Coil Transition in Polypeptides. Journal of Chemical Physics, 1965, 43, 2071-2074.                                                                                                                                   | 1.2 | 38        |
| 318 | Method for Calculating Internal Rotation Barriers. Journal of Chemical Physics, 1965, 42, 2209-2215.                                                                                                                                                     | 1.2 | 337       |
| 319 | Structure of Water and Hydrophobic Bonding in Proteins. IV. The Thermodynamic Properties of Liquid<br>Deuterium Oxide. Journal of Chemical Physics, 1964, 41, 680-689.                                                                                   | 1.2 | 386       |
| 320 | Role of Hydrophobic Bonding in Protein Structure. Zeitschrift Fur Elektrotechnik Und Elektrochemie,<br>1964, 68, 838-839.                                                                                                                                | 0.9 | 8         |
| 321 | Influence of water structure and of hydrophobic interactions on the strength of side-chain hydrogen bonds in proteins. Biopolymers, 1963, 1, 43-69.                                                                                                      | 1.2 | 155       |
| 322 | Effect of hydrophobic bonding on the stability of poly-L-alanine helices in water. Biopolymers, 1963, 1, 419-429.                                                                                                                                        | 1.2 | 61        |
| 323 | THE STRUCTURE OF WATER AND HYDROPHOBIC BONDING IN PROTEINS. III. THE THERMODYNAMIC PROPERTIES OF HYDROPHOBIC BONDS IN PROTEINS1,2. The Journal of Physical Chemistry, 1962, 66, 1773-1789.                                                               | 2.9 | 948       |
| 324 | Structure of Water and Hydrophobic Bonding in Proteins. II. Model for the Thermodynamic Properties of Aqueous Solutions of Hydrocarbons. Journal of Chemical Physics, 1962, 36, 3401-3417.                                                               | 1.2 | 631       |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic<br>Properties of Liquid Water. Journal of Chemical Physics, 1962, 36, 3382-3400. | 1.2 | 1,099     |
| 326 | Nonâ€Newtonian Viscosity of Solutions of Ellipsoidal Particles. Journal of Chemical Physics, 1955, 23, 1526-1532.                                                         | 1.2 | 230       |
| 327 | Bromination of Hydrocarbons. VI. Photochemical and Thermal Bromination of Toluene. Bond<br>Dissociation Energies. Journal of Chemical Physics, 1953, 21, 1258-1267.       | 1.2 | 23        |
| 328 | Effect of a Gaussian Distribution on Flow Birefringence. Journal of Chemical Physics, 1951, 19, 983-984.                                                                  | 1.2 | 13        |
| 329 | Entropy Sampling Monte Carlo for Polypeptides and Proteins. Advances in Chemical Physics, 0, , 243-272.                                                                   | 0.3 | 8         |