Nicolas Venteclef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417042/publications.pdf

Version: 2024-02-01

55 papers 3,837 citations

30 h-index 50 g-index

59 all docs 59 docs citations

59 times ranked

7244 citing authors

#	Article	IF	CITATIONS
1	Liver macrophages and inflammation in physiology and physiopathology of nonâ€alcoholic fatty liver disease. FEBS Journal, 2022, 289, 3024-3057.	2.2	37
2	Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells, 2022, 11, 924.	1.8	1
3	The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Molecular Cell, 2021, 81, 953-968.e9.	4.5	27
4	Understanding the heterogeneity and functions of metabolic tissue macrophages. Seminars in Cell and Developmental Biology, 2021, 119, 130-139.	2.3	7
5	Transcriptional and epigenetic control of adipocyte remodeling during obesity. Obesity, 2021, 29, 2013-2025.	1.5	6
6	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6
7	Adipocyte Reprogramming by the Transcriptional Coregulator GPS2 Impacts Beta Cell Insulin Secretion. Cell Reports, 2020, 32, 108141.	2.9	9
8	Interplay between Liver X Receptor and Hypoxia Inducible Factor $1\hat{l}_{\pm}$ Potentiates Interleukin- $1\hat{l}_{\pm}$ Production in Human Macrophages. Cell Reports, 2020, 31, 107665.	2.9	39
9	Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid remodeling by upregulating ATP binding cassette subfamily G member 1. Molecular Metabolism, 2020, 42, 101066.	3.0	7
10	Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Frontiers in Endocrinology, 2020, 11, 62.	1.5	79
11	Regulation of inflammation in diabetes: From genetics to epigenomics evidence. Molecular Metabolism, 2020, 41, 101041.	3.0	23
12	Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severe <scp>COVID</scp> â€19 in type 2 diabetes. EMBO Molecular Medicine, 2020, 12, e13038.	3.3	48
13	Inflammation métaboliqueÂ: importance des macrophages et de leur métabolisme. Medecine Des Maladies Metaboliques, 2020, 14, 429-436.	0.1	0
14	Transcriptional control of macrophage polarisation in type 2 diabetes. Seminars in Immunopathology, 2019, 41, 515-529.	2.8	22
15	Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nature Communications, 2019, 10, 1684.	5.8	48
16	Epigenetic Aspects of Nuclear Receptor Coregulators: How Nutritional and Environmental Signals Change Gene Expression Patterns., 2019,, 233-263.		0
17	Functional and phenotypical analysis of ILâ€6â€secreting CD4 ⁺ TÂcells in human adipose tissue. European Journal of Immunology, 2018, 48, 471-481.	1.6	6
18	Rab4b Deficiency in T Cells Promotes Adipose Treg/Th17 Imbalance, Adipose Tissue Dysfunction, and Insulin Resistance. Cell Reports, 2018, 25, 3329-3341.e5.	2.9	27

#	Article	IF	Citations
19	GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Reports, 2018, 24, 2957-2971.e6.	2.9	48
20	Epigenetic Aspects of Nuclear Receptor Coregulators: How Nutritional and Environmental Signals Change Gene Expression Patterns. , 2018, , 1-31.		0
21	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPAR $\hat{1}^3$. Scientific Reports, 2017, 7, 14087.	1.6	33
22	Transcriptional repression in macrophagesâ€"basic mechanisms and alterations in metabolic inflammatory diseases. FEBS Letters, 2017, 591, 2959-2977.	1.3	28
23	IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans. JCI Insight, 2016, 1, e88689.	2.3	43
24	Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nature Medicine, 2016, 22, 780-791.	15.2	91
25	Nuclear Receptor Signaling in the Control of Inflammation. , 2016, , 994-1016.		0
26	Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 2015, 36, 795-805.	1.0	423
27	Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase. Hypertension, 2015, 66, 149-157.	1.3	91
28	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	15.2	149
29	Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.	1.8	155
30	Adipocyte ATP-Binding Cassette G1 Promotes Triglyceride Storage, Fat Mass Growth, and Human Obesity. Diabetes, 2015, 64, 840-855.	0.3	56
31	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.	3.9	272
32	Liver X receptor: from metabolism to cancer. Biochemical Journal, 2014, 459, e1-e3.	1.7	10
33	T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity and Type 2 Diabetes. Diabetes, 2014, 63, 1966-1977.	0.3	197
34	Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia, 2014, 57, 1674-1683.	2.9	22
35	Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.	1.1	21
36	Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends in Endocrinology and Metabolism, 2013, 24, 625-634.	3.1	40

#	Article	IF	Citations
37	Fetal PGC-1α Overexpression Programs Adult Pancreatic β-Cell Dysfunction. Diabetes, 2013, 62, 1206-1216.	0.3	42
38	SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. Journal of Clinical Investigation, 2013, 123, 362-379.	3.9	83
39	Nuclear Receptor Signaling in the Control of Inflammation. , 2013, , 1-24.		O
40	Response to Letter Regarding Article, "Increased Adipose Tissue Oxygen Tension in Obese Compared With Lean Men Is Accompanied by Insulin Resistance, Impaired Adipose Tissue Capillarization, and Inflammation― Circulation, 2012, 125, .	1.6	0
41	Fasting-Induced FGF21 Is Repressed by LXR Activation via Recruitment of an HDAC3 Corepressor Complex in Mice. Molecular Endocrinology, 2012, 26, 1980-1990.	3.7	29
42	Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial. PLoS ONE, 2012, 7, e39930.	1.1	44
43	Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 909-918.	1.8	83
44	Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends in Endocrinology and Metabolism, 2011, 22, 333-343.	3.1	80
45	Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis. Journal of Biological Chemistry, 2011, 286, 370-379.	1.6	65
46	Increased Adipose Tissue Oxygen Tension in Obese Compared With Lean Men Is Accompanied by Insulin Resistance, Impaired Adipose Tissue Capillarization, and Inflammation. Circulation, 2011, 124, 67-76.	1.6	257
47	Krüppel-like factor 4 regulates macrophage polarization. Journal of Clinical Investigation, 2011, 121, 2736-2749.	3.9	613
48	GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXR \hat{l}^2 in the hepatic acute phase response. Genes and Development, 2010, 24, 381-395.	2.7	162
49	The Human <i>ADFP</i> Gene Is a Direct Liver-X-Receptor (LXR) Target Gene and Differentially Regulated by Synthetic LXR Ligands. Molecular Pharmacology, 2010, 77, 79-86.	1.0	13
50	E3 Ubiquitin Ligase RNF31 Cooperates with DAX-1 in Transcriptional Repression of Steroidogenesis. Molecular and Cellular Biology, 2009, 29, 2230-2242.	1.1	43
51	GPS2 Is Required for Cholesterol Efflux by Triggering Histone Demethylation, LXR Recruitment, and Coregulator Assembly at the ABCG1 Locus. Molecular Cell, 2009, 34, 510-518.	4.5	107
52	Regulation of Anti-atherogenic Apolipoprotein M Gene Expression by the Orphan Nuclear Receptor LRH-1. Journal of Biological Chemistry, 2008, 283, 3694-3701.	1.6	49
53	Interleukin-1 Receptor Antagonist Induction as an Additional Mechanism for Liver Receptor Homolog-1 to Negatively Regulate the Hepatic Acute Phase Response. Journal of Biological Chemistry, 2007, 282, 4393-4399.	1.6	29
54	Liver Receptor Homolog 1 Is a Negative Regulator of the Hepatic Acute-Phase Response. Molecular and Cellular Biology, 2006, 26, 6799-6807.	1.1	55

#	Article	IF	CITATIONS
55	The imidazoline-like drug S23515 affects lipid metabolism in hepatocyte by inhibiting the oxidosqualene:lanosterol cyclase activity. Biochemical Pharmacology, 2005, 69, 1041-1048.	2.0	8