Axel Kallies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5416837/publications.pdf

Version: 2024-02-01

47006 51608 11,795 88 47 86 citations h-index g-index papers 91 91 91 17322 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cellular and Molecular Immunology, 2022, 19, 421-431.	10.5	18
2	Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Science Immunology, 2022, 7, eabn8041.	11.9	8
3	Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 922-941.	1.5	13
4	Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted TÂcells in distinct cellular niches. Immunity, 2022, 55, 656-670.e8.	14.3	41
5	Glutaminase inhibition impairs CD8 TÂcell activation in STK11-/Lkb1-deficient lung cancer. Cell Metabolism, 2022, 34, 874-887.e6.	16.2	55
6	Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. European Heart Journal, 2021, 42, 938-947.	2.2	33
7	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	22.7	83
8	A molecular phylogeny and revision of the genus Pyropteron Newman, 1832 (Lepidoptera, Sesiidae) reveals unexpected diversity and frequent hostplant switch as a driver of speciation. Zootaxa, 2021, 4972, 175.	0.5	1
9	Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood, 2021, 137, 2721-2735.	1.4	75
10	Dynamic changes to tissue-resident immunity after MHC-matched and MHC-mismatched solid organ transplantation. Cell Reports, 2021, 35, 109141.	6.4	5
11	Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nature Communications, 2021, 12, 2782.	12.8	20
12	Transforming growth factor- \hat{l}^2 -regulated mTOR activity preserves cellular metabolism to maintain long-term TAcell responses in chronic infection. Immunity, 2021, 54, 1698-1714.e5.	14.3	82
13	The Ratio of Exhausted to Resident Infiltrating Lymphocytes Is Prognostic for Colorectal Cancer Patient Outcome. Cancer Immunology Research, 2021, 9, 1125-1140.	3.4	18
14	Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nature Immunology, 2021, 22, 1140-1151.	14.5	96
15	Tissue-specific differentiation of CD8+ resident memory T cells. Trends in Immunology, 2021, 42, 876-890.	6.8	30
16	Precursor exhausted T cells: key to successful immunotherapy?. Nature Reviews Immunology, 2020, 20, 128-136.	22.7	253
17	The clearwing moths (Lepidoptera, Sesiidae) of Australia, New Guinea and the Pacific Islands. Zootaxa, 2020, 4833, zootaxa.4833.1.1.	0.5	1
18	Methio "mineâ€! Cancer cells steal methionine and impair CD8 Tâ€cell function. Immunology and Cell Biology, 2020, 98, 623-625.	2.3	6

#	Article	IF	CITATIONS
19	Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood, 2020, 136, 3004-3017.	1.4	71
20	Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nature Immunology, 2020, 21, 1256-1266.	14.5	160
21	Human effector T cells express TOX—Not so "TOXâ€ic after all. Science Immunology, 2020, 5, .	11.9	8
22	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	27.8	141
23	Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nature Communications, 2020, 11, 252.	12.8	59
24	ÂÂÂÂÂÂA strong>A new species of the genus Toleria Walker, [1865] from northern Vietnam and Laos with establishment of a new generic synonymy in Cissuvorini (Lepidoptera,) Tj ETQq0 0 0 rgBT /Overlock 10	Tf05s0 537	Td (Sesiida
25	BATF3 programs CD8+ T cell memory. Nature Immunology, 2020, 21, 1397-1407.	14.5	80
26	IRF4 instructs effector Treg differentiation and immune suppression in human cancer. Journal of Clinical Investigation, 2020, 130, 3137-3150.	8.2	103
27	<estrong>New and little-known sun-moth species from Australia (Lepidoptera,) Tj ETQq1 1 0.784314 rgBT /Ov</estrong>	erlock 10	Tf ₀ 50 422 T
28	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	14.3	378
29	Defining â€̃T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
30	Tissue-resident memory T cells keep cancer dormant. Cell Research, 2019, 29, 341-342.	12.0	6
31	c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nature Immunology, 2019, 20, 471-481.	14.5	138
32	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	6.4	91
33	Transcription Factor T-bet in B Cells Modulates Germinal Center Polarization and Antibody Affinity Maturation in Response to Malaria. Cell Reports, 2019, 29, 2257-2269.e6.	6.4	36
34	IRF4 Activity Is Required in Established Plasma Cells to Regulate Gene Transcription and Mitochondrial Homeostasis. Cell Reports, 2019, 29, 2634-2645.e5.	6.4	47
35	IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nature Communications, 2019, 10, 5722.	12.8	68
36	Interleukin (IL)-33 and the IL-1 Family of Cytokinesâ€"Regulators of Inflammation and Tissue Homeostasis. Cold Spring Harbor Perspectives in Biology, 2019, 11, a028506.	5.5	29

#	Article	IF	CITATIONS
37	Tissue-Resident Lymphocytes in Solid Organ Transplantation. Transplantation, 2018, 102, 378-386.	1.0	26
38	MAIT cells contribute to protection against lethal influenza infection in vivo. Nature Communications, 2018, 9, 4706.	12.8	160
39	The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Frontiers in Immunology, 2018, 9, 2578.	4.8	5
40	A new sun moth species from the Flinders Ranges in South Australia (Lepidoptera, Castniidae). Zootaxa, 2018, 4369, 292-300.	0.5	2
41	Blimpâ€1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 TÂcells. European Journal of Immunology, 2018, 48, 1644-1662.	2.9	61
42	A new zygaenid moth species from Kangaroo Island, South Australia (Lepidoptera: Zygaenidae:) Tj ETQq0 0 0 rgB	T /Oyerloch	₹ 10 Tf 50 5
43	A new species of Aschistophleps from Thailand and Laos, with a new generic synonymy (Lepidoptera,) Tj ETQq $1\ 1$	0,784314	rgBT/Over
44	Transcription Factor Theftâ€"PU.1 Caught Red-Handed. Immunity, 2018, 48, 1063-1065.	14.3	0
45	T cell responses in the central nervous system. Nature Reviews Immunology, 2017, 17, 179-194.	22.7	219
46	Transcription Factor T-bet Orchestrates Lineage Development and Function in the Immune System. Trends in Immunology, 2017, 38, 287-297.	6.8	138
47	Eomesodermin promotes the development of type 1 regulatory T (T $<$ sub $>$ R $<$ /sub $>$ 1) cells. Science Immunology, 2017, 2, .	11.9	118
48	Transcriptional Regulation of Tissue-Resident Lymphocytes. Trends in Immunology, 2017, 38, 94-103.	6.8	164
49	The TNF Receptor Superfamily-NF-κB Axis Is Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues. Cell Reports, 2017, 20, 2906-2920.	6.4	115
50	Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity, 2017, 47, 135-147.e5.	14.3	133
51	Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity, 2017, 47, 1129-1141.e5.	14.3	335
52	The immune system of the liver: 50 years of strangeness. Clinical and Translational Immunology, 2017, 6, e164.	3.8	0
53	A new species and new records of Melittiini from China and Vietnam (Lepidoptera, Sesiidae). Zootaxa, 2016, 4205, 162.	0.5	2
54	Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. Journal of Experimental Medicine, 2016, 213, 1095-1111.	8.5	53

#	Article	IF	CITATIONS
55	Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 2016, 352, 459-463.	12.6	721
56	CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nature Immunology, 2016, 17, 1187-1196.	14.5	385
57	The Brachodidae of Sub-Saharan Africa (Lepidoptera, Cossoidea),Âwith implications for the origin of the family. Zootaxa, 2016, 4083, 1-39.	0.5	2
58	Synemon ignita sp. nov., a new sun moth species from southern Australia (Lepidoptera, Castniidae). Zootaxa, 2016, 4092, 436-44.	0.5	4
59	Severe Malaria Infections Impair Germinal Center Responses by Inhibiting T Follicular Helper Cell Differentiation. Cell Reports, 2016, 14, 68-81.	6.4	193
60	NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. Journal of Experimental Medicine, 2016, 213, 621-641.	8.5	33
61	A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nature Immunology, 2016, 17, 422-432.	14.5	145
62	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	16.2	133
63	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	4.7	92
64	Blocking IL-6 trans-Signaling Prevents High-Fat Diet-Induced Adipose Tissue Macrophage Recruitment but Does Not Improve Insulin Resistance. Cell Metabolism, 2015, 21, 403-416.	16.2	208
65	Development and Function of Effector Regulatory T Cells. Progress in Molecular Biology and Translational Science, 2015, 136, 155-174.	1.7	38
66	T-box Transcription Factors Combine with the Cytokines TGF- \hat{l}^2 and IL-15 to Control Tissue-Resident Memory T Cell Fate. Immunity, 2015, 43, 1101-1111.	14.3	457
67	A new extant family of primitive moths from <scp>K</scp> angaroo <scp>I</scp> sland, <scp>A</scp> ustralia, and its significance for understanding early <scp>L</scp> epidoptera evolution. Systematic Entomology, 2015, 40, 5-16.	3.9	32
68	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	14.5	442
69	The Regulatory T Cell: Jack-Of-All-Trades. Trends in Immunology, 2015, 36, 756-758.	6.8	17
70	Synchronizing transcriptional control of T cell metabolism and function. Nature Reviews Immunology, 2015, 15, 574-584.	22.7	111
71	The Paranthrenini of Mainland China (Lepidoptera, Sesiidae) . Zootaxa, 2014, 3811, 185.	0.5	5

<p>Laetosphecia, a new genus of clearwing moths from south-eastern China,Äwith a brief review of the Sesiini from China (Lepidoptera,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf仮6 57 Td {Sesiidae} &

#	Article	IF	CITATIONS
73	Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells. Genomics Data, 2014, 2, 396-398.	1.3	4
74	Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation. Immunity, 2014, 41, 1040-1051.	14.3	450
75	IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nature Communications, 2014, 5, 3770.	12.8	90
76	Fas ligand–mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas. Nature Medicine, 2014, 20, 283-290.	30.7	79
77	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	7.8	67
78	Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood, 2014, 123, 3420-3428.	1.4	23
79	The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013, 14, 1155-1165.	14.5	337
80	ILâ€27 paves different roads to Tr1. European Journal of Immunology, 2013, 43, 882-885.	2.9	31
81	ld2-Mediated Inhibition of E2A Represses Memory CD8+ T Cell Differentiation. Journal of Immunology, 2013, 190, 4585-4594.	0.8	81
82	Foxp3+ follicular regulatory T cells control the germinal center response. Nature Medicine, 2011, 17, 975-982.	30.7	1,092
83	The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology, 2011, 12, 304-311.	14.5	530
84	Blimp-1 Transcription Factor Is Required for the Differentiation of Effector CD8+ T Cells and Memory Responses. Immunity, 2009, 31, 283-295.	14.3	424
85	Terminal differentiation of lymphocytes depends on Blimp-1. Current Opinion in Immunology, 2007, 19, 156-162.	5.5	118
86	Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunology, 2006, 7, 466-474.	14.5	300
87	Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression. Journal of Experimental Medicine, 2004, 200, 967-977.	8.5	470
88	New records and a revised checklist of the Australian clearwing moths (Lepidoptera: Sesiidae). Australian Journal of Entomology, 2001, 40, 342-348.	1.1	4