Jörg Paul Rachen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5415745/publications.pdf

Version: 2024-02-01

194 papers 37,704 citations

4388 86 h-index 4885 168 g-index

194 all docs

194 docs citations

times ranked

194

19707 citing authors

#	Article	IF	CITATIONS
1	Depth of shower maximum and mass composition of cosmic rays from 50ÂPeV to 2ÂEeV measured with the LOFAR radio telescope. Physical Review D, 2021, 103, .	4.7	19
2	Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps. Physical Review Letters, 2020, 124, 105101.	7.8	28
3	Determining Electric Fields in Thunderclouds With the Radiotelescope LOFAR. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031433.	3.3	8
4	Status of the Lunar Detection Mode for Cosmic Particles of LOFAR. Journal of Physics: Conference Series, 2019, 1181, 012077.	0.4	0
5	The FRATS project: real-time searches for fast radio bursts and other fast transients with LOFAR at 135 MHz. Astronomy and Astrophysics, 2019, 621, A57.	5.1	14
6	A physical approach to modelling large-scale galactic magnetic fields. Astronomy and Astrophysics, 2019, 623, A113.	5.1	21
7	Needle-like structures discovered on positively charged lightning branches. Nature, 2019, 568, 360-363.	27.8	67
8	Cosmic Ray Physics with the LOFAR Radio Telescope. Journal of Physics: Conference Series, 2019, 1181, 012020.	0.4	0
9	IMAGINE: Modeling the Galactic Magnetic Field. Galaxies, 2019, 7, 17.	3.0	8
10	Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain. Astroparticle Physics, 2019, 111, 1-11.	4.3	13
11	Constraints on the low frequency spectrum of FRB 121102. Astronomy and Astrophysics, 2019, 623, A42.	5.1	35
12	LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2861-2876.	3.3	24
13	Ultra-high-energy cosmic rays from radio galaxies. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 036-036.	5.4	46
14	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
15	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
16	IMAGINE: a comprehensive view of the interstellar medium, Galactic magnetic fields and cosmic rays. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	5.4	49
17	The effect of the atmospheric refractive index on the radio signal of extensive air showers. Astroparticle Physics, 2017, 89, 23-29.	4.3	15
18	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46

#	Article	IF	Citations
19	Cosmic Ray Mass Measurements with LOFAR. EPJ Web of Conferences, 2017, 135, 01009.	0.3	O
20	Thunderstorm electric fields probed by extensive air showers through their polarized radio emission. Physical Review D, $2017, 95, .$	4.7	8
21	Lightning Imaging with LOFAR. EPJ Web of Conferences, 2017, 135, 03003.	0.3	1
22	Towards real-time identification of cosmic rays with LOw-Frequency ARray radio antennas. EPJ Web of Conferences, 2017, 135, 01011.	0.3	0
23	Circular polarization of radio emission from air showers in thunderstorm conditions. EPJ Web of Conferences, 2017, 135, 03002.	0.3	1
24	The mass composition of cosmic rays measured with LOFAR. EPJ Web of Conferences, 2017, 136, 02001.	0.3	3
25	TEC, Trigger and Check, preparing LOFAR for Lunar observations. EPJ Web of Conferences, 2017, 135, 04004.	0.3	0
26	The influence of the atmospheric refractive index on radioXmaxmeasurements of air showers. EPJ Web of Conferences, 2017, 135, 01012.	0.3	0
27	Precision study of radio emission from air showers at LOFAR. EPJ Web of Conferences, 2017, 136, 02012.	0.3	2
28	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
29	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2017, 607, A122.	5.1	24
30	Search for Cosmic Particles with the Moon and LOFAR. EPJ Web of Conferences, 2017, 135, 04003.	0.3	2
31	Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon. Journal of Physics: Conference Series, 2017, 898, 032004.	0.4	1
32	A study of radio frequency spectrum emitted by high energy air showers with LOFAR. EPJ Web of Conferences, 2017, 135, 01010.	0.3	0
33	Characterisation of the radio frequency spectrum emitted by high energy air showers with LOFAR. , 2017, , .		1
34	The effect of the atmospheric refractive index on the radio signal of extensive air showers using Global Data Assimilation System (GDAS). , 2017, , .		0
35	Expansion of the LOFAR Radboud Air Shower Array. , 2017, , .		0
36	Overview and Status of the Lunar Detection of Cosmic Particles with LOFAR., 2017,,.		0

#	Article	IF	CITATIONS
37	Cosmic ray mass composition with LOFAR. , 2017, , .		1
38	Study of the LOFAR radio self-trigger and single-station acquisition mode. , 2017, , .		0
39	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A140.	5.1	89
40	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A134.	5.1	48
41	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	5.1	134
42	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	5.1	94
43	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10.	5.1	384
44	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
45	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	5.1	117
46	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
47	Measurement of cosmic rays with LOFAR. Journal of Physics: Conference Series, 2016, 718, 052035.	0.4	0
48	Timing calibration and spectral cleaning of LOFAR time series data. Astronomy and Astrophysics, 2016, 590, A41.	5.1	8
49	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A132.	5.1	109
50	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	5.1	62
51	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
52	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	5.1	209
53	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9.	5.1	182
54	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A141.	5.1	55

#	Article	lF	CITATIONS
55	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A100.	5.1	44
56	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5.	5.1	55
57	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
58	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	5.1	69
59	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21.	5.1	114
60	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	5.1	53
61	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	5.1	273
62	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
63	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233
64	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A101.	5.1	24
65	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
66	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
67	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A138.	5.1	270
68	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
69	Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component. Astronomy and Astrophysics, 2016, 595, A33.	5.1	92
70	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
71	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	5.1	568
72	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	5.1	360

#	Article	IF	CITATIONS
73	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25.	5.1	153
74	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A103.	5.1	89
75	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A133.	5.1	173
76	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A109.	5.1	185
77	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
78	A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations. Nature, 2016, 531, 70-73.	27.8	116
79	Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms. Physical Review D, 2016, 94, .	4.7	27
80	Influence of atmospheric electric fields on the radio emission from extensive air showers. Physical Review D, 2016, 93, .	4.7	16
81	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22.	5.1	274
82	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A102.	5.1	25
83	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A104.	5.1	36
84	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A110.	5.1	64
85	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A136.	5.1	72
86	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	5.1	182
87	<i>Planck</i> iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	5.1	359
88	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A139.	5.1	32
89	Measurement of the cosmic-ray energy spectrum above 1016ÂeV with the LOFAR Radboud Air Shower Array. Astroparticle Physics, 2016, 73, 34-43.	4.3	14
90	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	5.1	440

#	Article	IF	CITATIONS
91	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	5.1	613
92	A study of the energy spectrum and composition of cosmic rays up to the highest energies. , 2016, , .		1
93	Measuring the cosmic ray mass composition with LOFAR. , 2016, , .		2
94	Probing atmospheric electric fields in thunderstorms through radio emission from extensive air showers. , 2016 , , .		0
95	A lateral distribution function for the radio emission of air showers. , 2016, , .		1
96	Calibration of the LOFAR antennas. , 2016, , .		0
97	NuMoon: Status of ultra high energy particle searches with LOFAR. , 2016, , .		0
98	Xmax reconstruction based on radio detection of air showers. , 2016, , .		0
99	Calibrating the absolute amplitude scale for air showers measured at LOFAR. Journal of Instrumentation, 2015, 10, P11005-P11005.	1.2	38
100	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 580, A22.	5.1	80
101	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i i="" planck<="">clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.</i>	5.1	46
102	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2015, 582, A30.	5.1	72
103	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2015, 582, A31.	5.1	59
104	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
105	A new way of air shower detection: measuring the properties of cosmic rays with LOFAR. Journal of Physics: Conference Series, 2015, 632, 012018.	0.4	0
106	<i>Planck</i> iiintermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
107	<i>Planck</i> iiintermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
108	<i>Planck</i> intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68

#	Article	IF	Citations
109	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
110	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A13.	5.1	37
111	Blind Search for Variability in Planck Data. Proceedings of the International Astronomical Union, 2015, 11, 62-63.	0.0	0
112	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Ast A107.	ro ph ysics,	. 2 015, 576,
113	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 582, A28.	5.1	33
114	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	7.8	819
115	Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers. Physical Review Letters, 2015, 114, 165001.	7.8	41
116	The radio emission pattern of air showers as measured with LOFARâ€"a tool for the reconstruction of the energy and the shower maximum. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 018-018.	5.4	33
117	The shape of the radio wavefront of extensive air showers as measured with LOFAR. Astroparticle Physics, 2015, 61, 22-31.	4.3	47
118	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
119	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
120	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
121	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
122	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
123	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
124	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
125	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
126	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216

#	Article	IF	CITATIONS
127	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
128	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
129	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
130	Polarized radio emission from extensive air showers measured with LOFAR. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	5.4	58
131	Method for high precision reconstruction of air shower <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< th=""><th>ni>max<th>92 mml:mi></th></th></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ni>max <th>92 mml:mi></th>	92 mml:mi>
132	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
133	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
134	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
135	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
136	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
137	<i>Planck</i> ≥013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
138	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> ll-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
139	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
140	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
141	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
142	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
143	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
144	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99

#	Article	IF	Citations
145	<i>Planck</i> >2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
146	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
147	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
148	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
149	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
150	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 561, A97.	5.1	80
151	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
152	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
153	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
154	Bayesian classification of astronomical objects - and what is behind it. , 2013, , .		0
155	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
156	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
157	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
158	Long-term variability of extragalactic radio sources in the <i>Planck < /i>Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2013, 553, A107.</i>	5.1	28
159	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
160	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
161	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
162	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63

#	Article	IF	CITATIONS
163	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
164	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
165	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
166	Simultaneous <i>Planck </i> , <i>Swift </i> , and <i>Fermi </i> observations of X-ray and <i<math>\hat{I}^3 ray selected blazars. Astronomy and Astrophysics, 2012, 541, A160.</i<math>	5.1	166
167	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
168	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
169	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
170	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
171	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
172	<i>Planck</i> early results. V. The Low Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A5.	5.1	77
173	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
174	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
175	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
176	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
177	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
178	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6â€"27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â- 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
179	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
180	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394

#	Article	IF	Citations
181	<i>Planck</i> early results. III. First assessment of the Low Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A3.	5.1	108
182	<i>Planck</i> pre-launch status: The <i>Planck</i> LFI programme. Astronomy and Astrophysics, 2010, 520, A3.	5.1	81
183	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268
184	The Planck/LFI data processing: real-time analysis, data management and scientific workflows. , 2010, , .		0
185	BL Lac objects in the synchrotron proton blazar model. Astroparticle Physics, 2003, 18, 593-613.	4.3	434
186	Monte Carlo simulations of photohadronic processes in astrophysics. Computer Physics Communications, 2000, 124, 290-314.	7. 5	318
187	Propagation of ultrahigh energy protons in the nearby universe. Physical Review D, 2000, 62, .	4.7	126
188	Cosmic ray bound for models of extragalactic neutrino production. Physical Review D, 2000, 63, .	4.7	257
189	Photohadronic Processes in Astrophysical Environments. Publications of the Astronomical Society of Australia, 1999, 16, 160-166.	3.4	73
190	Photohadronic neutrinos from transients in astrophysical sources. Physical Review D, 1998, 58, .	4.7	253
191	Cosmic rays and neutrinos from gamma-ray bursts. , 1998, , .		11
192	Contributions to the cosmic ray flux above the ankle: clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 1997, 286, 257-267.	4.4	80
193	Arrival Directions of the Most Energetic Cosmic Rays. Physical Review Letters, 1995, 75, 3056-3059.	7.8	140
194	Possible Extragalactic Sources of the Highest Energy Cosmic Raysa. Annals of the New York Academy of Sciences, 1995, 759, 468-471.	3.8	1