Timothy K Starr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5414795/publications.pdf Version: 2024-02-01

ΤΙΜΟΤΗΥ Κ STADD

#	Article	IF	CITATIONS
1	Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Translational Oncology, 2022, 16, 101318.	3.7	12
2	Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. IScience, 2022, 25, 103865.	4.1	12
3	Development of a Multiprotein Classifier for the Detection of Early Stage Ovarian Cancer. Cancers, 2022, 14, 3077.	3.7	4
4	R-Spondins 2 and 3 Are Overexpressed in a Subset of Human Colon and Breast Cancers. DNA and Cell Biology, 2021, 40, 70-79.	1.9	9
5	Single-Cell RNA Sequencing of Ovarian Cancer: Promises and Challenges. Advances in Experimental Medicine and Biology, 2021, 1330, 113-123.	1.6	4
6	UNC-45A Is Highly Expressed in the Proliferative Cells of the Mouse Genital Tract and in the Microtubule-Rich Areas of the Mouse Nervous System. Cells, 2021, 10, 1604.	4.1	2
7	Defining immune infiltrate heterogeneity by immunophenotyping of tumor micro-environment at single cell level: a step towards more effective personalized immunotherapy in ovarian cancer. Gynecologic Oncology, 2021, 162, S52.	1.4	1
8	Chemotherapy resistance pathways identified by single cell RNA sequencing. Gynecologic Oncology, 2021, 162, S109.	1.4	0
9	Identification of mutations that cooperate with defects in B cell transcription factors to initiate leukemia. Oncogene, 2021, 40, 6166-6179.	5.9	7
10	A highly annotated database of genes associated with platinum resistance in cancer. Oncogene, 2021, 40, 6395-6405.	5.9	41
11	A Genetically Engineered Primary Human Natural Killer Cell Platform for Cancer Immunotherapy. Molecular Therapy, 2020, 28, 52-63.	8.2	120
12	APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. Journal of Experimental Medicine, 2020, 217, .	8.5	87
13	Multiomic Analysis of Subtype Evolution and Heterogeneity in High-Grade Serous Ovarian Carcinoma. Cancer Research, 2020, 80, 4335-4345.	0.9	57
14	Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis. Gastroenterology, 2020, 159, 1882-1897.e5.	1.3	79
15	Mesenchymal Stem Cells As Guideposts for Nanoparticle-Mediated Targeted Drug Delivery in Ovarian Cancer. Cancers, 2020, 12, 965.	3.7	19
16	UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biology and Therapy, 2019, 20, 1304-1313.	3.4	14
17	Intercellular Transfer of Oncogenic KRAS via Tunneling Nanotubes Introduces Intracellular Mutational Heterogeneity in Colon Cancer Cells. Cancers, 2019, 11, 892.	3.7	43
18	Râ€spondin 2 Drives Liver Tumor Development in a Yesâ€Associated Proteinâ€Dependent Manner. Hepatology Communications, 2019, 3, 1496-1509.	4.3	15

TIMOTHY K STARR

#	Article	IF	CITATIONS
19	Simultaneous Measurement of 92 Serum Protein Biomarkers for the Development of a Multiprotein Classifier for Ovarian Cancer Detection. Cancer Prevention Research, 2019, 12, 171-184.	1.5	12
20	Biological Insights into Chemotherapy Resistance in Ovarian Cancer. International Journal of Molecular Sciences, 2019, 20, 2131.	4.1	15
21	Single-cell sequencing in ovarian cancer: a new frontier in precision medicine. Current Opinion in Obstetrics and Gynecology, 2019, 31, 49-55.	2.0	15
22	Cancer Gene Discovery: Past to Present. Methods in Molecular Biology, 2019, 1907, 1-15.	0.9	1
23	<i>Sleeping Beauty</i> Screen Identifies <i>RREB1</i> and Other Genetic Drivers in Human B-cell Lymphoma. Molecular Cancer Research, 2019, 17, 567-582.	3.4	19
24	De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments. Life Science Alliance, 2019, 2, e201900443.	2.8	8
25	Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene. Scientific Reports, 2018, 8, 15327.	3.3	17
26	RNA Sequencing of Carboplatin- and Paclitaxel-Resistant Endometrial Cancer Cells Reveals New Stratification Markers and Molecular Targets for Cancer Treatment. Hormones and Cancer, 2018, 9, 326-337.	4.9	14
27	Flap endonuclease overexpression drives genome instability and DNA damage hypersensitivity in a PCNA-dependent manner. Nucleic Acids Research, 2018, 46, 5634-5650.	14.5	35
28	Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genetics, 2018, 14, e1007376.	3.5	65
29	Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells. Gynecologic Oncology, 2017, 144, 598-606.	1.4	82
30	UNC-45A is required for neurite extension via controlling NMII activation. Molecular Biology of the Cell, 2017, 28, 1337-1346.	2.1	16
31	Transposon mutagenesis identifies candidate genes that cooperate with loss of transforming growth factorâ€beta signaling in mouse intestinal neoplasms. International Journal of Cancer, 2017, 140, 853-863.	5.1	19
32	A multiplex platform for the identification of ovarian cancer biomarkers. Clinical Proteomics, 2017, 14, 34.	2.1	25
33	Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017, 8, 54775-54787.	1.8	75
34	Mouse models for the discovery of colorectal cancer driver genes. World Journal of Gastroenterology, 2016, 22, 815.	3.3	8
35	Case-oriented pathways analysis in pancreatic adenocarcinoma using data from a sleeping beauty transposon mutagenesis screen. BMC Medical Genomics, 2016, 9, 16.	1.5	0
36	An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types. Bioinformatics, 2016, 32, 1643-1651.	4.1	35

TIMOTHY K STARR

#	Article	IF	CITATIONS
37	Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Medicine, 2015, 7, 55.	8.2	197
38	The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Research, 2015, 43, D844-D848.	14.5	109
39	Risks of Insertional Mutagenesis by DNA Transposons in Cancer Gene Therapy. , 2015, , 65-83.		4
40	Transposon Mutagenesis Screen Identifies Potential Lung Cancer Drivers and CUL3 as a Tumor Suppressor. Molecular Cancer Research, 2015, 13, 1238-1247.	3.4	47
41	Genetic Signature of Histiocytic Sarcoma Revealed by a Sleeping Beauty Transposon Genetic Screen in Mice. PLoS ONE, 2014, 9, e97280.	2.5	16
42	Identification of Sleeping Beauty Transposon Insertions in Solid Tumors using Linker-mediated PCR. Journal of Visualized Experiments, 2013, , e50156.	0.3	2
43	Abstract A242: R-spondin 2 drives Wnt signaling and tumor formation in breast and liver cancer , 2013, , .		0
44	New methods for finding common insertion sites and co-occurring common insertion sites in transposon- and virus-based genetic screens. Nucleic Acids Research, 2012, 40, 3822-3833.	14.5	23
45	Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488, 660-664.	27.8	862
46	TAPDANCE: An automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data. BMC Bioinformatics, 2012, 13, 154.	2.6	49
47	A Sleeping Beauty transposon-mediated screen identifies murine susceptibility genes for adenomatous polyposis coli (<i>Apc</i>)-dependent intestinal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5765-5770.	7.1	68
48	A Modified <i>Sleeping Beauty</i> Transposon System That Can Be Used to Model a Wide Variety of Human Cancers in Mice. Cancer Research, 2009, 69, 8150-8156.	0.9	156
49	A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer. Science, 2009, 323, 1747-1750.	12.6	321
50	A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnology, 2009, 27, 264-274.	17.5	194
51	Cancer Gene Discovery Using the Sleeping Beauty Transposon. Cell Cycle, 2005, 4, 1744-1748.	2.6	24
52	A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13574-13579.	7.1	115
53	The Regulated Expression of a Diverse Set of Genes during Thymocyte Positive Selection In Vivo. Journal of Immunology, 2004, 173, 5434-5444.	0.8	51
54	Receptor Sensitivity: When T cells Lose Their Sense of Self. Current Biology, 2003, 13, R239-R241.	3.9	21

#	Article	IF	CITATIONS
55	Positive and Negative Selection of T Cells. Annual Review of Immunology, 2003, 21, 139-176.	21.8	1,321
56	Thymocyte Sensitivity and Supramolecular Activation Cluster Formation Are Developmentally Regulated: A Partial Role for Sialylation. Journal of Immunology, 2003, 171, 4512-4520.	0.8	52