Diego Ruano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541404/publications.pdf Version: 2024-02-01

DIECO RUANO

#	Article	IF	CITATIONS
1	Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Frontiers in Molecular Biosciences, 2021, 8, 658742.	3.5	16
2	Autophagic receptor p62 protects against glycationâ€derived toxicity and enhances viability. Aging Cell, 2020, 19, e13257.	6.7	27
3	SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death and Disease, 2018, 9, 531.	6.3	26
4	Neuroinflammation alters cellular proteostasis by producing endoplasmic reticulum stress, autophagy activation and disrupting ERAD activation. Scientific Reports, 2017, 7, 8100.	3.3	21
5	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
6	Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism. Scientific Reports, 2015, 5, 10027.	3.3	19
7	Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiology of Aging, 2015, 36, 1953-1963.	3.1	30
8	Learning improvement after PI3K activation correlates with de novo formation of functional small spines. Frontiers in Molecular Neuroscience, 2014, 6, 54.	2.9	26
9	Anti-inflammatory Activity of a Honey Flavonoid Extract on Lipopolysaccharide-Activated N13 Microglial Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 12304-12311.	5.2	90
10	Centrosomal aggregates and Golgi fragmentation disrupt vesicular trafficking of DAT. Neurobiology of Aging, 2012, 33, 2462-2477.	3.1	11
11	Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. Journal of Neuroinflammation, 2012, 9, 87.	7.2	54
12	Ageâ€related differences in the dynamics of hippocampal proteasome recovery. Journal of Neurochemistry, 2012, 123, 635-644.	3.9	6
13	Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathologica, 2012, 123, 53-70.	7.7	179
14	Regional difference in inflammatory response to LPS-injection in the brain: Role of microglia cell density. Journal of Neuroimmunology, 2011, 238, 44-51.	2.3	24
15	Age-dependent Accumulation of Soluble Amyloid Î ² (AÎ ²) Oligomers Reverses the Neuroprotective Effect of Soluble Amyloid Precursor Protein-α (sAPPα) by Modulating Phosphatidylinositol 3-Kinase (PI3K)/Akt-GSK-3Î ² Pathway in Alzheimer Mouse Model. Journal of Biological Chemistry, 2011, 286, 18414-18425	3.4	164
16	Calretinin Interneurons are Early Targets of Extracellular Amyloid-β Pathology in PS1/AβPP Alzheimer Mice Hippocampus. Journal of Alzheimer's Disease, 2010, 21, 119-132.	2.6	81
17	Age and meloxicam attenuate the ischemia/reperfusion-induced down-regulation in the NMDA receptor genes. Neurochemistry International, 2010, 56, 878-885.	3.8	18
18	Ageâ€related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. Journal of Neurochemistry, 2009, 108, 260-272.	3.9	58

DIEGO RUANO

#	Article	IF	CITATIONS
19	Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell, 2009, 8, 654-665.	6.7	50
20	Extracellular Amyloid-β and Cytotoxic Glial Activation Induce Significant Entorhinal Neuron Loss in Young PS1M146L/APP751SL Mice. Journal of Alzheimer's Disease, 2009, 18, 755-776.	2.6	40
21	Prevalence between different α subunits performing the benzodiazepine binding sites in native heterologous GABAA receptors containing the α2 subunit. Journal of Neurochemistry, 2008, 79, 183-191.	3.9	21
22	Distribution of NADPH-diaphorase and nitric oxide synthase reactivity in the central nervous system of the goldfish (Carassius auratus). Journal of Chemical Neuroanatomy, 2008, 35, 12-32.	2.1	21
23	Inflammatory Response in the Hippocampus of PS1 _{M146L} /APP _{751SL} Mouse Model of Alzheimer's Disease: Age-Dependent Switch in the Microglial Phenotype from Alternative to Classic. Journal of Neuroscience, 2008, 28, 11650-11661.	3.6	340
24	Inter-individual variability in the expression of the mutated form of hPS1M146L determined the production of Al² peptides in the PS1xAPP transgenic mice. Journal of Neuroscience Research, 2007, 85, 787-797.	2.9	9
25	Molecular and cellular characterization of the ageâ€related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. Journal of Neurochemistry, 2007, 103, 984-996.	3.9	67
26	Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiology of Aging, 2006, 27, 973-982.	3.1	179
27	Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1×APP transgenic model of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1658-1672.	3.1	175
28	Nucleus-Specific Abnormalities of GABAergic Synaptic Transmission in a Genetic Model of Absence Seizures. Journal of Neurophysiology, 2006, 96, 3074-3081.	1.8	72
29	Postnatal development of the α1 containing GABAA receptor subunit in rat hippocampus. Developmental Brain Research, 2004, 148, 129-141.	1.7	27
30	Expression of α5 GABAA receptor subunit in developing rat hippocampus. Developmental Brain Research, 2004, 151, 87-98.	1.7	31
31	Rat hippocampal GABAergic molecular markers are differentially affected by ageing. Journal of Neurochemistry, 2003, 85, 368-377.	3.9	86
32	Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of β2 GABAA receptor subunit mRNA. Brain Research Protocols, 2001, 8, 184-190.	1.6	9
33	Subunit composition of rat ventral spinal cord GABAA receptors, assessed by single cell RT-multiplex PCR. NeuroReport, 2000, 11, 3169-3173.	1.2	9
34	GABAA and α-Amino-3-hydroxy-5-methylsoxazole-4-propionate Receptors Are Differentially Affected by Aging in the Rat Hippocampus. Journal of Biological Chemistry, 2000, 275, 19585-19593.	3.4	33
35	Pharmacological properties of the GABAA receptor complex from brain regions of (hypoemotional) Roman high- and (hyperemotional) low-avoidance rats. European Journal of Pharmacology, 1998, 354, 91-97.	3.5	15
36	Absence of association between δ and γ2 subunits in native GABAA receptors from rat brain. European Journal of Pharmacology, 1998, 347, 347-353.	3.5	46

DIEGO RUANO

#	Article	IF	CITATIONS
37	GABAA receptor subunit expression changes in the rat cerebellum and cerebral cortex during aging. Molecular Brain Research, 1997, 45, 59-70.	2.3	49
38	Expression of GABAAReceptor Subunit mRNAs by Layer V Pyramidal Cells of the Rat Primary Visual Cortex. European Journal of Neuroscience, 1997, 9, 857-862.	2.6	24
39	Age-related modifications on the GABAA receptor binding properties from Wistar rat prefrontal cortex. Brain Research, 1996, 738, 103-108.	2.2	18
40	Molecular and Pharmacological Characterization of Native Cortical Î ³ -Aminobutyric AcidA Receptors Containing Both α1 and α3 Subunits. Journal of Biological Chemistry, 1996, 271, 27902-27911.	3.4	51
41	Kainate receptor subunits expressed in single cultured hippocampal neurons: Molecular and functional variants by RNA editing. Neuron, 1995, 14, 1009-1017.	8.1	138
42	Agingâ€Associated Changes in the Pharmacological Properties of the Benzodiazepine (ω) Receptor Isotypes in the Rat Hippocampus. Journal of Neurochemistry, 1995, 64, 867-873.	3.9	29
43	Molecular heterogeneity of the type I GABAA/benzodiazepine receptor complex. European Journal of Pharmacology, 1994, 267, 123-128.	2.6	22
44	Molecular characterization of Type I GABAA receptor complex from rat cerebral cortex and hippocampus. Molecular Brain Research, 1994, 25, 225-233.	2.3	28
45	Absence of modifications of the pharmacological properties of the GABAA receptor complex during aging, as assessed in 3- and 24-month-old rat cerebral cortex. European Journal of Pharmacology, 1993, 246, 81-87.	2.6	19
46	Comparative autoradiographic distribution of central ω (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Research, 1993, 604, 240-250.	2.2	92
47	Heterogeneity in the Allosteric Interaction Between the ?-Aminobutyric Acid (GABA) Binding Site and Three Different Benzodiazepine Binding Sites of the GABAA/Benzodiazepine Receptor Complex in the Rat Nervous System. Journal of Neurochemistry, 1992, 58, 485-493.	3.9	67