Monique Gangloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541267/publications.pdf Version: 2024-02-01

MONIQUE GANCLOFE

#	Article	IF	CITATIONS
1	Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology, 2014, 14, 546-558.	22.7	653
2	Structure and Function of Toll Receptors and Their Ligands. Annual Review of Biochemistry, 2007, 76, 141-165.	11.1	562
3	The molecular basis of the host response to lipopolysaccharide. Nature Reviews Microbiology, 2010, 8, 8-14.	28.6	303
4	Toll-like receptors as molecular switches. Nature Reviews Immunology, 2006, 6, 693-698.	22.7	160
5	What the Myddosome structure tells us about the initiation of innate immunity. Trends in Immunology, 2011, 32, 104-109.	6.8	155
6	Elucidation of the MD-2/TLR4 Interface Required for Signaling by Lipid IVa. Journal of Immunology, 2008, 181, 1245-1254.	0.8	134
7	Crystal Structure of a Mutant hERα Ligand-binding Domain Reveals Key Structural Features for the Mechanism of Partial Agonism. Journal of Biological Chemistry, 2001, 276, 15059-15065.	3.4	125
8	Estrogen receptor transcription and transactivation Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Research, 2000, 2, 353-9.	5.0	110
9	MD-2: the Toll ?gatekeeper? in endotoxin signalling. Trends in Biochemical Sciences, 2004, 29, 294-300.	7.5	95
10	Allergens as Immunomodulatory Proteins: The Cat Dander Protein Fel d 1 Enhances TLR Activation by Lipid Ligands. Journal of Immunology, 2013, 191, 1529-1535.	0.8	85
11	Overexpression, Purification, and Crystal Structure of Native ERα LBD. Protein Expression and Purification, 2001, 22, 165-173.	1.3	81
12	Molecular Mechanism That Induces Activation of SpÃæle, the Ligand for the Drosophila Toll Receptor. Journal of Biological Chemistry, 2010, 285, 19502-19509.	3.4	72
13	Ligand-Receptor and Receptor-Receptor Interactions Act in Concert to Activate Signaling in the Drosophila Toll Pathway. Journal of Biological Chemistry, 2005, 280, 22793-22799.	3.4	69
14	Structural Insight into the Mechanism of Activation of the Toll Receptor by the Dimeric Ligand SpÃæle. Journal of Biological Chemistry, 2008, 283, 14629-14635.	3.4	67
15	Different dimerisation mode for TLR4 upon endosomal acidification?. Trends in Biochemical Sciences, 2012, 37, 92-98.	7.5	65
16	Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-IºB Signaling. Immunity, 2017, 47, 635-647.e6.	14.3	63
17	Role of the SpÃæle Pro-domain in the Generation of an Active Toll Receptor Ligand. Journal of Biological Chemistry, 2007, 282, 13522-13531.	3.4	48
18	Cytokine SpĀæle binds to the <i>Drosophila</i> immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20461-20466.	7.1	36

Monique Gangloff

#	Article	IF	CITATIONS
19	Different ligands-different receptor conformations: Modeling of the hER? LBD in complex with agonists and antagonists. Medicinal Research Reviews, 2001, 21, 523-539.	10.5	34
20	The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6. Veterinary Research, 2013, 44, 50.	3.0	32
21	Three-tier regulation of cell number plasticity by neurotrophins and Tolls in <i>Drosophila</i> . Journal of Cell Biology, 2017, 216, 1421-1438.	5.2	32
22	Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cellular and Molecular Life Sciences, 2019, 76, 3667-3678.	5.4	31
23	Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cellular and Molecular Life Sciences, 2015, 72, 3971-3982.	5.4	28
24	Immunogenicity Testing of Lipidoids InÂVitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design. Molecular Therapy - Nucleic Acids, 2018, 11, 159-169.	5.1	27
25	Structure of Toll-Like Receptors. Handbook of Experimental Pharmacology, 2008, , 181-200.	1.8	20
26	Identification of Key Residues That Confer Rhodobacter sphaeroides LPS Activity at Horse TLR4/MD-2. PLoS ONE, 2014, 9, e98776.	2.5	17
27	Functional Insights from the Crystal Structure of the N-Terminal Domain of the Prototypical Toll Receptor. Structure, 2013, 21, 143-153.	3.3	13
28	Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. Journal of Controlled Release, 2017, 247, 182-193.	9.9	13
29	IIV-6 Inhibits NF-κB Responses in Drosophila. Viruses, 2019, 11, 409.	3.3	11
30	Baseless Assumptions: Activation of TLR9 by DNA. Immunity, 2008, 28, 293-294.	14.3	10
31	Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERα in complex with synthetic ligands. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 54-57.	0.7	7
32	Conserved mechanisms of signal transduction by Toll and Toll-like receptors. Journal of Endotoxin Research, 2005, 11, 294-298.	2.5	6
33	Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures. Methods in Molecular Biology, 2009, 517, 69-79.	0.9	4
34	LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding. Protein Expression and Purification, 2011, 76, 173-183.	1.3	3
35	Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures. Methods in Molecular Biology, 2016, 1390, 29-39.	0.9	3
36	Liesegang-like patterns of Toll crystals grown in gel. Journal of Applied Crystallography, 2013, 46, 337-345.	4.5	2