List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411875/publications.pdf Version: 2024-02-01

PHUN CONC

#	Article	IF	CITATIONS
1	Age-related GSK3Î ² overexpression drives podocyte senescence and glomerular aging. Journal of Clinical Investigation, 2022, 132, .	8.2	36
2	Pharmacological Melanocortin 5 Receptor Activation Attenuates Glomerular Injury and Proteinuria in Rats With Puromycin Aminonucleoside Nephrosis. Frontiers in Physiology, 2022, 13, .	2.8	2
3	Microdose Lithium Protects against Pancreatic Islet Destruction and Renal Impairment in Streptozotocin-Elicited Diabetes. Antioxidants, 2021, 10, 138.	5.1	16
4	Melanocortin System in Kidney Homeostasis and Disease: Novel Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 651236.	2.8	9
5	Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease. Cell Death and Disease, 2021, 12, 432.	6.3	15
6	Rationale and Design of Assessing the Effectiveness of Short-Term Low-Dose Lithium Therapy in Averting Cardiac Surgery-Associated Acute Kidney Injury: A Randomized, Double Blinded, Placebo Controlled Pilot Trial. Frontiers in Medicine, 2021, 8, 639402.	2.6	5
7	The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney International, 2021, 100, 1037-1053.	5.2	51
8	Therapeutic Targeting of SGLT2: A New Era in the Treatment of Diabetes and Diabetic Kidney Disease. Frontiers in Endocrinology, 2021, 12, 749010.	3.5	24
9	Glycogen synthase kinase 3β hyperactivity in urinary exfoliated cells predicts progression of diabetic kidney disease. Kidney International, 2020, 97, 175-192.	5.2	36
10	The ageing kidney: Molecular mechanisms and clinical implications. Ageing Research Reviews, 2020, 63, 101151.	10.9	64
11	RNA-binding proteins tristetraprolin and human antigen R are novel modulators of podocyte injury in diabetic kidney disease. Cell Death and Disease, 2020, 11, 413.	6.3	21
12	Relapse of Nephrotic Syndrome after Adrenocorticotropic Hormone-Induced Remission: Implications of Adrenocorticotropic Hormone Antibodies. American Journal of Nephrology, 2020, 51, 390-394.	3.1	4
13	Melanocortin 5 receptor signaling pathway in health and disease. Cellular and Molecular Life Sciences, 2020, 77, 3831-3840.	5.4	38
14	Melanocortin therapy ameliorates podocytopathy and proteinuria in experimental focal segmental glomerulosclerosis involving a podocyte specific non-MC1R-mediated melanocortinergic signaling. Clinical Science, 2020, 134, 695-710.	4.3	10
15	Triptolide potentiates the cytoskeleton-stabilizing activity of cyclosporine A in glomerular podocytes a GSK3β dependent mechanism. American Journal of Translational Research (discontinued), 2020, 12, 800-812.	0.0	4
16	GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition. Redox Biology, 2019, 26, 101275.	9.0	69
17	Lithium targeting of AMPK protects against cisplatinâ€induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells. FASEB Journal, 2019, 33, 14370-14381.	0.5	35
18	Long noncoding RNA: an emerging player in diabetes and diabetic kidney disease. Clinical Science, 2019, 133, 1321-1339.	4.3	86

#	Article	IF	CITATIONS
19	Mineralocorticoid receptor: A hidden culprit for hemodialysis vascular access dysfunction. EBioMedicine, 2019, 39, 621-627.	6.1	10
20	Ecdysone Elicits Chronic Renal Impairment via Mineralocorticoid-Like Pathogenic Activities. Cellular Physiology and Biochemistry, 2018, 49, 1633-1645.	1.6	6
21	Effectiveness and Safety of Peritoneal Dialysis Treatment in Patients with Refractory Congestive Heart Failure due to Chronic Cardiorenal Syndrome. BioMed Research International, 2018, 2018, 1-9.	1.9	8
22	Targeting Regulatory T Cells for Transplant Tolerance: New Insights and Future Perspectives. Kidney Diseases (Basel, Switzerland), 2018, 4, 205-213.	2.5	13
23	Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Molecular Therapy, 2018, 26, 2523-2532.	8.2	49
24	Activation of mineralocorticoid receptor by ecdysone, an adaptogenic and anabolic ecdysteroid, promotes glomerular injury and proteinuria involving overactive GSK3β pathway signaling. Scientific Reports, 2018, 8, 12225.	3.3	6
25	Acquired Resistance to Corticotropin Therapy in Nephrotic Syndrome: Role of De Novo Neutralizing Antibody. Pediatrics, 2017, 140, e20162169.	2.1	7
26	Valproate hampers podocyte acquisition of immune phenotypes via intercepting the GSK3β facilitated NFkB activation. Oncotarget, 2017, 8, 88332-88344.	1.8	6
27	What we need to know about the effect of lithium on the kidney. American Journal of Physiology - Renal Physiology, 2016, 311, F1168-F1171.	2.7	56
28	Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Scientific Reports, 2016, 6, 37234.	3.3	40
29	Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK31². Scientific Reports, 2016, 6, 36698.	3.3	34
30	MC1R is dispensable for the proteinuria reducing and glomerular protective effect of melanocortin therapy. Scientific Reports, 2016, 6, 27589.	3.3	20
31	The β isoform of CSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy. Journal of Pathology, 2016, 239, 23-35.	4.5	42
32	Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase 3β Reinforces the Nrf2 Antioxidant Defense against Podocytopathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2289-2308.	6.1	68
33	Tanshinone IIA Attenuates Renal Fibrosis after Acute Kidney Injury in a Mouse Model through Inhibition of Fibrocytes Recruitment. BioMed Research International, 2015, 2015, 1-10.	1.9	31
34	Glycogen Synthase Kinase $3\hat{l}^2$ Orchestrates Microtubule Remodeling in Compensatory Glomerular Adaptation to Podocyte Depletion. Journal of Biological Chemistry, 2015, 290, 1348-1363.	3.4	34
35	Fine-tuning of NFκB by glycogen synthase kinase 3β directs the fate of glomerular podocytes upon injury. Kidney International, 2015, 87, 1176-1190.	5.2	47
36	Therapeutic targeting of aldosterone: a novel approach to the treatment of glomerular disease. Clinical Science, 2015, 128, 527-535.	4.3	26

#	Article	IF	CITATIONS
37	Remote Ischemic Preconditioning for Kidney Protection: CSK3β-Centric Insights Into the Mechanism of Action. American Journal of Kidney Diseases, 2015, 66, 846-856.	1.9	31
38	Pharmacological targeting of <scp>CSK3β</scp> confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition. British Journal of Pharmacology, 2015, 172, 895-909.	5.4	38
39	Therapeutic targeting of GSK3Î ² enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. Gut, 2015, 64, 168-179.	12.1	73
40	The redox sensitive glycogen synthase kinase 3β suppresses the self-protective antioxidant response in podocytes upon oxidative glomerular injury. Oncotarget, 2015, 6, 39493-39506.	1.8	21
41	Delayed Administration of a Single Dose of Lithium Promotes Recovery from AKI. Journal of the American Society of Nephrology: JASN, 2014, 25, 488-500.	6.1	74
42	Leveraging Melanocortin Pathways to Treat Glomerular Diseases. Advances in Chronic Kidney Disease, 2014, 21, 134-151.	1.4	49
43	Glycogen Synthase Kinase 3β Dictates Podocyte Motility and Focal Adhesion Turnover by Modulating Paxillin Activity. American Journal of Pathology, 2014, 184, 2742-2756.	3.8	50
44	Redox-sensitive glycogen synthase kinase 3β-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury. Free Radical Biology and Medicine, 2013, 65, 849-858.	2.9	48
45	Adrenocorticotropic hormone ameliorates acute kidney injury by steroidogenic-dependent and -independent mechanisms. Kidney International, 2013, 83, 635-646.	5.2	36
46	The renaissance of corticotropin therapy in proteinuric nephropathies. Nature Reviews Nephrology, 2012, 8, 122-128.	9.6	84
47	Inhibition of glycogen synthase kinase-3β prevents NSAID-induced acute kidney injury. Kidney International, 2012, 81, 662-673.	5.2	63
48	Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney. Laboratory Investigation, 2011, 91, 85-96.	3.7	21
49	Transglutaminase-1 Regulates Renal Epithelial Cell Proliferation through Activation of Stat-3. Journal of Biological Chemistry, 2009, 284, 3345-3353.	3.4	17
50	Human renal 11β-hydroxysteroid dehydrogenase 1 functions and co-localizes with COX-2. Life Sciences, 2008, 82, 631-637.	4.3	25
51	Co-localization of glucocorticoid metabolizing and prostaglandin synthesizing enzymes in rat kidney and liver. Life Sciences, 2008, 83, 725-731.	4.3	9
52	Variable expression of 11β Hydroxysteroid dehydrogenase (11β-HSD) isoforms in vascular endothelial cells. Steroids, 2008, 73, 1187-1196.	1.8	20
53	Candesartan suppresses chronic renal inflammation by a novel antioxidant action independent of AT1R blockade. Kidney International, 2008, 74, 1128-1138.	5.2	74
54	Hepatocyte Growth Factor Suppresses Proinflammatory NFκB Activation through GSK3β Inactivation in Renal Tubular Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 7401-7410.	3.4	89

#	Article	IF	CITATIONS
55	Multi-target anti-inflammatory action of hepatocyte growth factor. Current Opinion in Investigational Drugs, 2008, 9, 1163-70.	2.3	24
56	Anti-Inflammatory Effect of Hepatocyte Growth Factor in Chronic Kidney Disease: Targeting the Inflamed Vascular Endothelium. Journal of the American Society of Nephrology: JASN, 2006, 17, 2464-2473.	6.1	83
57	Activation of PI3K–Akt–CSK3β pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells. Biochemical and Biophysical Research Communications, 2005, 330, 27-33.	2.1	35
58	Hepatocyte Growth Factor Ameliorates Renal Interstitial Inflammation in Rat Remnant Kidney by Modulating Tubular Expression of Macrophage Chemoattractant Protein-1 and RANTES. Journal of the American Society of Nephrology: JASN, 2004, 15, 2868-2881.	6.1	99
59	Hepatocyte Growth Factor Modulates Matrix Metalloproteinases and Plasminogen Activator/Plasmin Proteolytic Pathways in Progressive Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2003, 14, 3047-3060.	6.1	88
60	The Janus view: Dual roles for hypoxia-inducible factor in renal repair after acute kidney injury. American Journal of Physiology - Renal Physiology, 0, , .	2.7	1