Min-Sheng Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411725/publications.pdf

Version: 2024-02-01

55 1,266 18 33 papers citations h-index g-index

58 58 58 1870 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Molecular Biology and Evolution, 2015, 32, 1880-1889.	8.9	193
2	863 genomes reveal the origin and domestication of chicken. Cell Research, 2020, 30, 693-701.	12.0	144
3	Domestication Genomics: Evidence from Animals. Annual Review of Animal Biosciences, 2014, 2, 65-84.	7.4	98
4	Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Research, 2016, 26, 556-573.	12.0	69
5	Tracing the Austronesian Footprint in Mainland Southeast Asia: A Perspective from Mitochondrial DNA. Molecular Biology and Evolution, 2010, 27, 2417-2430.	8.9	68
6	DomeTree: a canonical toolkit for mitochondrial <scp>DNA</scp> analyses in domesticated animals. Molecular Ecology Resources, 2015, 15, 1238-1242.	4.8	45
7	Tracing the legacy of the early Hainan Islanders - a perspective from mitochondrial DNA. BMC Evolutionary Biology, 2011, 11, 46.	3. 2	44
8	An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens. Molecular Biology and Evolution, 2017, 34, 3081-3088.	8.9	42
9	Comparative population genomics reveals genetic basis underlying body size of domestic chickens. Journal of Molecular Cell Biology, 2016, 8, 542-552.	3 . 3	41
10	Whole-Genome Sequencing of African Dogs Provides Insights into Adaptations against Tropical Parasites. Molecular Biology and Evolution, 2018, 35, 287-298.	8.9	41
11	Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b. BMC Biology, 2011, 9, 2.	3 . 8	34
12	Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. National Science Review, 2018, 6, 10-14.	9.5	34
13	A Matrilineal Genetic Legacy from the Last Glacial Maximum Confers Susceptibility to Schizophrenia in Han Chinese. Journal of Genetics and Genomics, 2014, 41, 397-407.	3.9	28
14	Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genomics, 2020, 21, 316.	2.8	27
15	Hybrid assembly of ultra-long Nanopore reads augmented with 10x-Genomics contigs: Demonstrated with a human genome. Genomics, 2019, 111, 1896-1901.	2.9	26
16	Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biology, 2021, 19, 118.	3.8	22
17	Mitochondrial genomes uncover the maternal history of the Pamir populations. European Journal of Human Genetics, 2018, 26, 124-136.	2.8	21
18	Lactase persistence may have an independent origin in Tibetan populations from Tibet, China. Journal of Human Genetics, 2012, 57, 394-397.	2.3	20

#	Article	IF	CITATIONS
19	The high diversity of SARS-CoV-2-related coronaviruses in pangolins alters potential ecological risks. Zoological Research, 2021, 42, 833-843.	2.1	20
20	A parallel mechanism underlying frizzle in domestic chickens. Journal of Molecular Cell Biology, 2018, 10, 589-591.	3.3	19
21	Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Science Bulletin, 2018, 63, 743-746.	9.0	17
22	EMPOP-quality mtDNA control region sequences from Kashmiri of Azad Jammu & Emportante (amp; Kashmir, Pakistan. Forensic Science International: Genetics, 2016, 25, 125-131.	3.1	16
23	Caveats about interpretation of ancient chicken mtDNAs from northern China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1970-1.	7.1	15
24	A chromosomeâ€scale reference genome and genomeâ€wide genetic variations elucidate adaptation in yak. Molecular Ecology Resources, 2021, 21, 201-211.	4.8	14
25	Tracing the Genetic Legacy of the Tibetan Empire in the Balti. Molecular Biology and Evolution, 2021, 38, 1529-1536.	8.9	13
26	A cryptic mitochondrial DNA link between North European and West African dogs. Journal of Genetics and Genomics, 2017, 44, 163-170.	3.9	11
27	The evolutionary genetics of lactase persistence in seven ethnic groups across the Iranian plateau. Human Genomics, 2019, 13, 7.	2.9	11
28	Paleolithic genetic link between Southern China and Mainland Southeast Asia revealed by ancient mitochondrial genomes. Journal of Human Genetics, 2020, 65, 1125-1128.	2.3	11
29	Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers. PeerJ, 2021, 9, e10607.	2.0	10
30	Retrieving Y chromosomal haplogroup trees using GWAS data. European Journal of Human Genetics, 2014, 22, 1046-1050.	2.8	9
31	Mitochondrial <scp>DNA</scp> variation of <scp>N</scp> igerian domestic helmeted guinea fowl. Animal Genetics, 2015, 46, 576-579.	1.7	9
32	Potential dual expansion of domesticated donkeys revealed by worldwide analysis on mitochondrial sequences. Zoological Research, 2020, 41, 51-60.	2.1	9
33	Reconciling the conflicts between mitochondrial DNA haplogroup trees of Canis lupus. Forensic Science International: Genetics, 2016, 23, 83-85.	3.1	8
34	mtDNA sequence diversity of Hazara ethnic group from Pakistan. Forensic Science International: Genetics, 2017, 30, e1-e5.	3.1	8
35	Analysis of the genetic variation in mitochondrial DNA, Y-chromosome sequences, and MC1R sheds light on the ancestry of Nigerian indigenous pigs. Genetics Selection Evolution, 2017, 49, 52.	3.0	8
36	Inferring the Population Expansions in Peopling of Japan. PLoS ONE, 2011, 6, e21509.	2.5	7

3

#	Article	IF	CITATIONS
37	Questioning the evidence for a Central Asian domestication origin of dogs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2554-5.	7.1	6
38	Amphibian assemblages and diversity patterns in two forest ecosystems of Southâ€Eastern Nigeria. African Journal of Ecology, 2020, 58, 815-827.	0.9	6
39	Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics, 2020, 21, 207.	2.8	6
40	Genomic Analyses Unveil Helmeted Guinea Fowl (<i>Numida meleagris</i>) Domestication in West Africa. Genome Biology and Evolution, 2021, 13, .	2.5	6
41	An ancient record of an avian hybrid and the potential uses of art in ecology and conservation. Ibis, 2016, 158, 444-445.	1.9	5
42	Identity-by-Descent Analysis Reveals Susceptibility Loci for Severe Acne in Chinese Han Cohort. Journal of Investigative Dermatology, 2019, 139, 2049-2051.e20.	0.7	5
43	Mitochondrial DNA variation of Nigerian Muscovy duck (<i>Cairina moschata</i>). Animal Genetics, 2020, 51, 485-486.	1.7	4
44	Genome-wide investigations reveal the population structure and selection signatures of Nigerian cattle adaptation in the sub-Saharan tropics. BMC Genomics, 2022, 23, 306.	2.8	4
45	Was ADH1B under Selection in European Populations?. American Journal of Human Genetics, 2016, 99, 1217-1219.	6.2	3
46	The uncertainty of population relationship and divergence time inferred by the multiple sequentially Markovian coalescent model. Journal of Human Genetics, 2018, 63, 775-777.	2.3	3
47	Genetic variation and cryptic lineage diversity of the Nigerian red-headed rock agama Agama agama associate with eco-geographic zones. Environmental Epigenetics, 2019, 65, 713-724.	1.8	2
48	Complete mtDNA genomes reveal similar penetrances of maternally inherited type 2 diabetes in two Chinese families. Mitochondrial DNA, 2014, 27, 1-10.	0.6	1
49	Mitochondrial DNA sequence variation in Iranian native dogs. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2018, 29, 394-402.	0.7	1
50	Mitochondrial DNA variation of Nigerian dromedary camel (<i>CamelusÂdromedarius</i>). Animal Genetics, 2021, 52, 570-572.	1.7	1
51	No association between Y chromosomal haplogroups and severe acne in the Han Chinese population. Journal of Human Genetics, 2014, 59, 475-476.	2.3	0
52	Sri Lankan pig ancestry revealed by mitochondrial <scp>DNA</scp> , Yâ€chromosome, and <i><scp>MC</scp>1R</i> . Animal Genetics, 2017, 48, 622-623.	1.7	0
53	Complete mitochondrial genome of Sri Lankan Junglefowl (Gallus lafayetti) and phylogenetic study. Mitochondrial DNA Part B: Resources, 2018, 3, 83-84.	0.4	0
54	Identity-by-descent refines mapping of candidate regions for preaxial polydactyly II /III in a large Chinese pedigree. Hereditas, 2018, 155, 2.	1.4	0

#	Article	IF	CITATIONS
55	Re-evaluating data quality of dog mitochondrial, Y chromosomal, and autosomal SNPs genotyped by SNP array. Zoological Research, 2016, 37, 356-360.	2.1	0