List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411476/publications.pdf Version: 2024-02-01

RDADLEV M TERO

#	Article	IF	CITATIONS
1	BIOGENIC MANGANESE OXIDES: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 2004, 32, 287-328.	11.0	1,081
2	Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 2005, 13, 421-428.	7.7	606
3	Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiology Letters, 1998, 162, 193-198.	1.8	394
4	Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proceedings of the United States of America, 2005, 102, 5558-5563.	7.1	287
5	Soluble Mn(III) in Suboxic Zones. Science, 2006, 313, 1955-1957.	12.6	281
6	A Large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria. Applied and Environmental Microbiology, 2001, 67, 4573-4582.	3.1	269
7	Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. American Mineralogist, 2005, 90, 1342-1357.	1.9	243
8	Biotic and abiotic products of Mn(II) oxidation by spores of the marineBacillus sp.strain SC-1. American Mineralogist, 2005, 90, 143-154.	1.9	237
9	Environmental oxidation rate of manganese(II): bacterial catalysis. Geochimica Et Cosmochimica Acta, 1982, 46, 1073-1079.	3.9	235
10	Occurrence and Mechanisms of Microbial Oxidation of Manganese. Advances in Applied Microbiology, 1988, 33, 279-318.	2.4	224
11	Abundant Porewater Mn(III) Is a Major Component of the Sedimentary Redox System. Science, 2013, 341, 875-878.	12.6	222
12	Bacteriogenic Manganese Oxides. Accounts of Chemical Research, 2010, 43, 2-9.	15.6	213
13	Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount. Geomicrobiology Journal, 2005, 22, 127-139.	2.0	195
14	Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S883-S905.	1.5	188
15	Adsorption of Uranium(VI) to Manganese Oxides: X-ray Absorption Spectroscopy and Surface Complexation Modeling. Environmental Science & Technology, 2013, 47, 850-858.	10.0	187
16	Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV). Geochimica Et Cosmochimica Acta, 1995, 59, 4393-4408.	3.9	186
17	Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species. Applied and Environmental Microbiology, 2002, 68, 874-880.	3.1	184
18	Reductive Sequestration of Pertechnetate (⁹⁹ TcO ₄ [–]) by Nano Zerovalent Iron (nZVI) Transformed by Abiotic Sulfide. Environmental Science & Technology, 2013, 47, 5302-5310.	10.0	162

#	Article	IF	CITATIONS
19	Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. Journal of Bacteriology, 1996, 178, 3517-3530.	2.2	157
20	In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Geochimica Et Cosmochimica Acta, 2000, 64, 2775-2778.	3.9	151
21	Cometabolism of Cr(VI) byShewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering, 2003, 83, 627-637.	3.3	151
22	Biogenic Uraninite Nanoparticles and Their Importance for Uranium Remediation. Elements, 2008, 4, 407-412.	0.5	148
23	Dissimilatory Metal Reduction by the Facultative Anaerobe Pantoea agglomerans SP1. Applied and Environmental Microbiology, 2000, 66, 543-548.	3.1	144
24	Enzymatic Manganese(II) Oxidation by a Marine α-Proteobacterium. Applied and Environmental Microbiology, 2001, 67, 4024-4029.	3.1	142
25	Direct Identification of a Bacterial Manganese(II) Oxidase, the Multicopper Oxidase MnxG, from Spores of Several Different Marine <i>Bacillus</i> Species. Applied and Environmental Microbiology, 2008, 74, 1527-1534.	3.1	141
26	Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction. Applied and Environmental Microbiology, 2005, 71, 7453-7460.	3.1	139
27	Mn(II,III) oxidation and MnO ₂ mineralization by an expressed bacterial multicopper oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11731-11735.	7.1	137
28	Soluble Mn(III)–L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochimica Et Cosmochimica Acta, 2017, 199, 238-246.	3.9	135
29	Microbial mediation of Mn(II) and Co(II) precipitation at the O ₂ /H ₂ S interfaces in two anoxic fjords1. Limnology and Oceanography, 1984, 29, 1247-1258.	3.1	131
30	Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria. Applied and Environmental Microbiology, 2011, 77, 5445-5457.	3.1	125
31	Mn(II) Oxidation Is Catalyzed by Heme Peroxidases in " <i>Aurantimonas manganoxydans</i> ―Strain SI85-9A1 and <i>Erythrobacter</i> sp. Strain SD-21. Applied and Environmental Microbiology, 2009, 75, 4130-4138.	3.1	122
32	Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Frontiers in Microbiology, 2015, 6, 179.	3.5	120
33	Manganese(III) binding to a pyoverdine siderophore produced by a manganese(II)-oxidizing bacterium. Geochimica Et Cosmochimica Acta, 2004, 68, 4809-4820.	3.9	119
34	Surface Charge Properties of and Cu(II) Adsorption by Spores of the Marine <i>Bacillus</i> sp. Strain SG-1. Applied and Environmental Microbiology, 1998, 64, 1123-1129.	3.1	119
35	Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochimica Et Cosmochimica Acta, 2011, 75, 6497-6510.	3.9	112
36	Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea. Limnology and Oceanography, 2003, 48, 2369-2376.	3.1	110

#	Article	IF	CITATIONS
37	Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta, 2011, 84, 374-381.	5.5	108
38	cumA Multicopper Oxidase Genes from Diverse Mn(II)-Oxidizing and Non-Mn(II)-Oxidizing Pseudomonas Strains. Applied and Environmental Microbiology, 2001, 67, 4272-4278.	3.1	107
39	Toxicity of Cr(III) toShewanellasp. Strain MR-4 during Cr(VI) Reduction. Environmental Science & Technology, 2007, 41, 214-220.	10.0	106
40	Microbial diversity and biogeochemistry of the Guaymas Basin deepâ€sea hydrothermal plume. Environmental Microbiology, 2010, 12, 1334-1347.	3.8	105
41	Manganese(II)-Oxidizing Bacillus Spores in Guaymas Basin Hydrothermal Sediments and Plumes. Applied and Environmental Microbiology, 2006, 72, 3184-3190.	3.1	103
42	Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochimica Et Cosmochimica Acta, 1993, 57, 3907-3923.	3.9	98
43	Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochimica Et Cosmochimica Acta, 2009, 73, 1878-1889.	3.9	97
44	Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME Journal, 2011, 5, 1748-1758.	9.8	97
45	The molecular biogeochemistry of manganese(II) oxidation. Biochemical Society Transactions, 2012, 40, 1244-1248.	3.4	95
46	Elimination of Manganese(II,III) Oxidation in Pseudomonas putida GB-1 by a Double Knockout of Two Putative Multicopper Oxidase Genes. Applied and Environmental Microbiology, 2013, 79, 357-366.	3.1	95
47	Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Archives of Microbiology, 2002, 178, 450-456.	2.2	94
48	Oxidative UO ₂ Dissolution Induced by Soluble Mn(III). Environmental Science & Technology, 2014, 48, 289-298.	10.0	92
49	Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochimica Et Cosmochimica Acta, 2013, 100, 24-40.	3.9	91
50	Loihichelins Aâ^'F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5. Journal of Natural Products, 2009, 72, 884-888.	3.0	90
51	<i>c</i> -Type Cytochromes and Manganese Oxidation in <i>Pseudomonas putida</i> MnB1. Applied and Environmental Microbiology, 1998, 64, 3549-3555.	3.1	90
52	Cr(III) Is Indirectly Oxidized by the Mn(II)-Oxidizing BacteriumBacillussp. Strain SG-1. Environmental Science & Technology, 2007, 41, 528-533.	10.0	88
53	A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2009, 2, 872-876.	12.9	87
54	Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. Geochimica Et Cosmochimica Acta, 2009, 73, 6517-6530.	3.9	85

#	Article	IF	CITATIONS
55	Use of Poisons in Determination of Microbial Manganese Binding Rates in Seawater. Applied and Environmental Microbiology, 1984, 47, 740-745.	3.1	83
56	Determination of Uranyl Incorporation into Biogenic Manganese Oxides Using X-ray Absorption Spectroscopy and Scattering. Environmental Science & amp; Technology, 2006, 40, 771-777.	10.0	81
57	Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6448-6453.	7.1	81
58	Evidence for the presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay. Marine Chemistry, 2015, 171, 58-66.	2.3	81
59	Cobalt(II) Oxidation by the Marine Manganese(II)-Oxidizing <i>Bacillus</i> sp. Strain SG-1. Applied and Environmental Microbiology, 1994, 60, 2949-2957.	3.1	79
60	Hidden in plain sight: discovery of sheath-forming, iron-oxidizing <i>Zetaproteobacteria</i> at Loihi Seamount, Hawaii, USA. FEMS Microbiology Ecology, 2013, 85, 116-127.	2.7	78
61	Genomic Insights into Mn(II) Oxidation by the Marine Alphaproteobacterium <i>Aurantimonas</i> sp. Strain SI85-9A1. Applied and Environmental Microbiology, 2008, 74, 2646-2658.	3.1	77
62	Effect of Oxygen Tension, Mn(II) Concentration, and Temperature on the Microbially Catalyzed Mn(II) Oxidation Rate in a Marine Fjord. Applied and Environmental Microbiology, 1985, 50, 1268-1273.	3.1	76
63	Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron. Environmental Science & Technology, 2014, 48, 7409-7417.	10.0	73
64	Chapter 7. BACTERIALLY MEDIATED MINERAL FORMATION: INSIGHTS INTO MANGANESE(II) OXIDATION FROM MOLECULAR GENETIC AND BIOCHEMICAL STUDIES. , 1997, , 225-266.		70
65	Microbial Ecology of Fe (hydr)oxide Mats and Basaltic Rock from Vailulu'u Seamount, American Samoa. Geomicrobiology Journal, 2009, 26, 581-596.	2.0	70
66	Characterization ofAlteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Current Microbiology, 1980, 3, 311-315.	2.2	68
67	Microbial manganese(II) oxidation in the marine environment: a quantitative study. Biogeochemistry, 1986, 2, 149-161.	3.5	68
68	Structural dependence of Mn complexation by siderophores: Donor group dependence on complex stability and reactivity. Geochimica Et Cosmochimica Acta, 2012, 88, 106-119.	3.9	67
69	BIOGEOCHEMICAL FACTORS AFFECTING MERCURY METHYLATION IN SEDIMENTS OF THE VENICE LAGOON, ITALY. Environmental Toxicology and Chemistry, 2007, 26, 655.	4.3	66
70	Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx. Nature Communications, 2017, 8, 746.	12.8	65
71	Cr(VI) Reduction by Sulfidogenic and Nonsulfidogenic Microbial Consortia. Applied and Environmental Microbiology, 2003, 69, 1847-1853.	3.1	64
72	Oxygen isotope analyses of chemically and microbially produced manganese oxides and manganates. Geochimica Et Cosmochimica Acta, 1995, 59, 4409-4425.	3.9	63

#	Article	IF	CITATIONS
73	Biogenic and Synthetic MnO ₂ Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. Environmental Science & Technology, 2019, 53, 4185-4197.	10.0	63
74	Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1817-1841.	1.4	59
75	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism. Journal of the American Chemical Society, 2017, 139, 11381-11391.	13.7	58
76	The Molecular Geomicrobiology of Bacterial Manganese(II) Oxidation. , 2010, , 285-308.		57
77	Genetic analysis of the marine manganese-oxidizing Bacillus sp. strain SG-1: protoplast transformation, Tn917 mutagenesis, and identification of chromosomal loci involved in manganese oxidation. Journal of Bacteriology, 1993, 175, 7594-7603.	2.2	56
78	Structural Influences of Sodium and Calcium Ions on the Biogenic Manganese Oxides Produced by the MarineBacillusSp., Strain SG-1. Geomicrobiology Journal, 2005, 22, 181-193.	2.0	56
79	Indirect Oxidation of Co(II) in the Presence of the Marine Mn(II)-Oxidizing Bacterium Bacillus sp. Strain SG-1. Applied and Environmental Microbiology, 2007, 73, 6905-6909.	3.1	56
80	Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1. Applied and Environmental Microbiology, 2016, 82, 3774-3782.	3.1	56
81	Inter-relationships of MnO2 precipitation, siderophore–Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II)-oxidizing bacterial cultures. Geochimica Et Cosmochimica Acta, 2007, 71, 5672-5683.	3.9	54
82	Aurantimonas manganoxydans, sp. nov. andAurantimonas litoralis, sp. nov.: Mn(II) Oxidizing Representatives of a Globally Distributed Clade of alpha-Proteobacteriafrom the OrderRhizobiales. Geomicrobiology Journal, 2009, 26, 189-198.	2.0	54
83	Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepharon palpebratus and Kryptophanaron alfredi): population sizes and growth within the light organs, and rates of release into the seawater. Marine Biology, 1984, 78, 249-254.	1.5	53
84	Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Marine Chemistry, 2008, 111, 214-220.	2.3	52
85	Identification of a Two-Component Regulatory Pathway Essential for Mn(II) Oxidation in <i>Pseudomonas putida</i> GB-1. Applied and Environmental Microbiology, 2010, 76, 1224-1231.	3.1	52
86	Cr(III) Oxidation and Cr Toxicity in Cultures of the Manganese(II)-OxidizingPseudomonas putidaStrain GB-1. Geomicrobiology Journal, 2005, 22, 151-159.	2.0	51
87	Multicopper oxidase involvement in both Mn(II) and Mn(III) oxidation during bacterial formation of MnO2. Journal of Biological Inorganic Chemistry, 2012, 17, 1151-1158.	2.6	51
88	Oxidative and reductive processes contributing to manganese cycling at oxic-anoxic interfaces. Marine Chemistry, 2017, 195, 122-128.	2.3	49
89	In vitro studies indicate a quinone is involved in bacterial Mn(II) oxidation. Archives of Microbiology, 2007, 189, 59-69.	2.2	47
90	Indirect UO ₂ Oxidation by Mn(II)-oxidizing Spores of <i>Bacillus</i> sp. Strain SG-1 and the Effect of U and Mn Concentrations. Environmental Science & Technology, 2008, 42, 8709-8714.	10.0	45

#	Article	IF	CITATIONS
91	Ubiquitous Dissolved Inorganic Carbon Assimilation by Marine Bacteria in the Pacific Northwest Coastal Ocean as Determined by Stable Isotope Probing. PLoS ONE, 2012, 7, e46695.	2.5	45
92	Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology (United Kingdom), 1996, 142, 2549-2559.	1.8	44
93	Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium Pseudomonas stutzeri VS-10: The Potential Role of Basalt in Enhancing Growth. Frontiers in Microbiology, 2017, 8, 363.	3.5	41
94	Luminous bacteria and light emitting fish: Ultrastructure of the symbiosis. BioSystems, 1979, 11, 269-280.	2.0	40
95	Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1740-1755.	1.4	40
96	Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism. Journal of the American Chemical Society, 2017, 139, 11369-11380.	13.7	39
97	Pseudomonas marincola sp. nov., isolated from marine environments. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 706-710.	1.7	38
98	Structural features of manganese precipitating bacteria. Origins of Life and Evolution of Biospheres, 1980, 10, 117-126.	0.6	37
99	Searching for Biosignatures Using Electron Paramagnetic Resonance (EPR) Analysis of Manganese Oxides. Astrobiology, 2011, 11, 775-786.	3.0	37
100	Effects of Mn(II) on UO ₂ Dissolution under Anoxic and Oxic Conditions. Environmental Science & Technology, 2014, 48, 5546-5554.	10.0	36
101	Cryptic Cross-Linkages Among Biogeochemical Cycles: Novel Insights from Reactive Intermediates. Elements, 2015, 11, 409-414.	0.5	35
102	Contribution by symbiotically luminous fishes to the occurrence and bioluminescence of luminous bacteria in seawater. Microbial Ecology, 1984, 10, 69-77.	2.8	34
103	Isotopic fractionation of dissolved ammonium at the oxygenâ€hydrogen sulfide interface in anoxic waters. Geophysical Research Letters, 1991, 18, 649-652.	4.0	34
104	Analysis of <i>in situ</i> manganese(II) oxidation in the Columbia River and offshore plume: linking <i>Aurantimonas</i> and the associated microbial community to an active biogeochemical cycle. Environmental Microbiology, 2011, 13, 1561-1576.	3.8	34
105	Marine microbial Mn(II) oxidation mediates Cr(III) oxidation and isotope fractionation. Geochimica Et Cosmochimica Acta, 2021, 297, 101-119.	3.9	34
106	Limitations and benefits of ARISA intra-genomic diversity fingerprinting. Journal of Microbiological Methods, 2009, 78, 111-118.	1.6	33
107	Concentrations of reactive Mn(III)-L and MnO2 in estuarine and marine waters determined using spectrophotometry and the leuco base, leucoberbelin blue. Talanta, 2019, 200, 91-99.	5.5	33
108	An interlaboratory comparison of 16S rRNA geneâ€based terminal restriction fragment length polymorphism and sequencing methods for assessing microbial diversity of seafloor basalts. Environmental Microbiology, 2009, 11, 1728-1735.	3.8	32

#	Article	IF	CITATIONS
109	Culturable <i>Rhodobacter</i> and <i>Shewanella</i> species are abundant in estuarine turbidity maxima of the Columbia River. Environmental Microbiology, 2011, 13, 589-603.	3.8	32
110	Kinetics of Mn(II) oxidation by spores of the marine Bacillus sp. SG-1. Geochimica Et Cosmochimica Acta, 2016, 189, 58-69.	3.9	31
111	Utilization of Substrate Components during Basaltic Glass Colonization by <i>Pseudomonas</i> and <i>Shewanella</i> Isolates. Geomicrobiology Journal, 2009, 26, 648-656.	2.0	30
112	The Speciation and Mobility of Mn and Fe in Estuarine Sediments. Aquatic Geochemistry, 2019, 25, 3-26.	1.3	30
113	In situ sulfide removal and CO2 fixation rates at deep-sea hydrothermal vents and the oxic/anoxic interface in Framvaren Fjord, Norway. Marine Chemistry, 1999, 66, 201-213.	2.3	28
114	Reduction of Manganese Oxides: Thermodynamic, Kinetic and Mechanistic Considerations for One- Versus Two-Electron Transfer Steps. Aquatic Geochemistry, 2018, 24, 257-277.	1.3	28
115	Dissolved Mn(III) in water treatment works: Prevalence and significance. Water Research, 2018, 140, 181-190.	11.3	27
116	Mercury Speciation in Marine Sediments under Sulfate-Limited Conditions. Environmental Science & Technology, 2010, 44, 3752-3757.	10.0	26
117	Sulfur Disproportionation by the Facultative Anaerobe Pantoea agglomerans SP1 as a Mechanism for Chromium(VI) Reduction. Geomicrobiology Journal, 2002, 19, 121-132.	2.0	24
118	Multicopper manganese oxidase accessory proteins bind Cu and heme. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1853-1859.	2.3	24
119	The abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-like morphotypes in Lake Washington, USA. FEMS Microbiology Letters, 1987, 45, 21-29.	1.8	23
120	The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1. Geochimica Et Cosmochimica Acta, 2013, 101, 1-11.	3.9	22
121	Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Frontiers in Microbiology, 2014, 5, 202.	3.5	22
122	Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species. Frontiers in Microbiology, 2018, 9, 560.	3.5	22
123	EXAFS, XANES and In-Situ SRXRD Characterization of Biogenic Manganese Oxides Produced in Sea Water. Physica Scripta, 2005, , 888.	2.5	20
124	Mn(II) oxidation in Pseudomonas putida GB-1 is influenced by flagella synthesis and surface substrate. Archives of Microbiology, 2011, 193, 605-614.	2.2	20
125	Pressure effects on Clostridium strains isolated from a cold deep-sea environment. Extremophiles, 2004, 8, 169-173.	2.3	19
126	Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. Journal of the American Society for Mass Spectrometry, 2018, 29, 723-733.	2.8	19

#	Article	IF	CITATIONS
127	Impact of Microbial Mn Oxidation on the Remobilization of Bioreduced U(IV). Environmental Science & Technology, 2013, 47, 3606-3613.	10.0	18
128	The oceanic crust as a bioreactor. Geophysical Monograph Series, 2004, , 325-341.	0.1	17
129	Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2015, 137, 10563-10575.	13.7	17
130	Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12. Metallomics, 2017, 9, 183-191.	2.4	17
131	Dark Carbon Fixation in the Columbia River's Estuarine Turbidity Maxima: Molecular Characterization of Red-Type cbbL Genes and Measurement of DIC Uptake Rates in Response to Added Electron Donors. Estuaries and Coasts, 2013, 36, 1073-1083.	2.2	16
132	Silica Biomineralization of Calothrix-Dominated Biofacies from Queen's Laundry Hot-Spring, Yellowstone National Park, USA. Frontiers in Environmental Science, 2016, 4, .	3.3	15
133	CO-EVOLUTION OF LUMINOUS BACTERIA AND THEIR EUKARYOTIC HOSTS. Annals of the New York Academy of Sciences, 1981, 361, 76-91.	3.8	15
134	Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2017, 139, 8868-8877.	13.7	14
135	Distribution and concentration of soluble manganese(II), soluble reactive Mn(III)-L, and particulate MnO2 in the Northwest Atlantic Ocean. Marine Chemistry, 2020, 226, 103858.	2.3	13
136	Biogenic Manganeseâ€Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multiâ€Copper Oxidase, MnxEFG. Chemistry - A European Journal, 2017, 23, 1346-1352.	3.3	12
137	Pseudomonas laurentiana sp. nov., an Mn(III)-oxidizing Bacterium Isolated from the St. Lawrence Estuary. Pharmacognosy Communications, 2018, 8, 153-157.	0.5	12
138	Relocation effects of dredged marine sediments on mercury geochemistry: Venice lagoon, Italy. Estuarine, Coastal and Shelf Science, 2011, 93, 7-13.	2.1	11
139	Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1. Frontiers in Microbiology, 2014, 5, 301.	3.5	11
140	Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River. Frontiers in Microbiology, 2015, 6, 1074.	3.5	11
141	Distribution of desferrioxamine-B-extractable soluble manganese(III) and particulate MnO2 in the St. Lawrence Estuary, Canada. Marine Chemistry, 2019, 208, 70-82.	2.3	11
142	Natural Attenuation of Cr(VI) Contamination in Laboratory Mesocosms. Geomicrobiology Journal, 2003, 20, 389-401.	2.0	10
143	Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiology Letters, 1998, 162, 193-198.	1.8	9
144	Tunable Biogenic Manganese Oxides. Chemistry - A European Journal, 2017, 23, 13482-13492.	3.3	8

#	Article	IF	CITATIONS
145	Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. Journal of Biological Inorganic Chemistry, 2018, 23, 1093-1104.	2.6	8
146	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. Microbiology Spectrum, 2016, 4, .	3.0	7
147	Novel manganese cycling at very low ionic strengths in the Columbia River Estuary. Water Research, 2021, 207, 117801.	11.3	7
148	CO-EVOLUTION OF LUMINOUS BACTERIA AND THEIR EUKARYOTIC HOSTS. Annals of the New York Academy of Sciences, 1981, 361, 76-91.	3.8	5
149	Introduction: Advances in the Geomicrobiology and Biogeochemistry of Manganese and Iron Oxidation. Geomicrobiology Journal, 2005, 22, 77-78.	2.0	5
150	Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. Journal of Inorganic Biochemistry, 2021, 224, 111547.	3.5	3
151	Probing Electron Transfer in the Manganeseâ€Oxideâ€Forming MnxEFG Protein Complex using Fourier Transformed AC Voltammetry: Understanding the Oxidative Priming Effect. ChemElectroChem, 2018, 5, 872-876.	3.4	2
152	Manganese Oxidation by Spores of the Marine Bacillus sp. Strain SG-1. , 1998, , 177-180.		2
153	Direct and Indirect Processes Leading to Uranium(IV) Oxidation. , 0, , 139-156.		1
154	Imaging and Analyses of Iron-oxidizing Bacteria on Basalt Glass by methods of FIB-SEM and HRTEM. Microscopy and Microanalysis, 2008, 14, 1560-1561.	0.4	0
155	Citation for presentation of the 2008 Clair C. Patterson Award to Bill Sunda. Geochimica Et Cosmochimica Acta, 2009, 73, S10.	3.9	0
156	The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. , 0, , 367-386.		0
157	Formation of manganese oxide minerals by bacteria. , 2007, , 173-196.		0