Junyao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411055/publications.pdf

Version: 2024-02-01

28	1,495	18	27
papers	citations	h-index	g-index
29	29	29	1021
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Transistorâ€Based Artificial Synapses. Advanced Functional Materials, 2019, 29, 1903700.	14.9	396
2	Perovskite/Organic Semiconductor-Based Photonic Synaptic Transistor for Artificial Visual System. ACS Applied Materials & District Synaptic Transistor for Artificial Visual System.	8.0	155
3	Recent Progress in Photonic Synapses for Neuromorphic Systems. Advanced Intelligent Systems, 2020, 2, 1900136.	6.1	132
4	Wood-Derived Nanopaper Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Synaptic Transistors. ACS Applied Materials & Dielectrics for Organic Transistors. ACS Applied	8.0	86
5	Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydrate Polymers, 2021, 267, 118198.	10.2	73
6	Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes. Small, 2021, 17, e2007241.	10.0	58
7	<scp>Spectrumâ€dependent</scp> photonic synapses based on <scp>2D</scp> imine polymers for <scp>powerâ€efficient</scp> neuromorphic computing. InformaÄnÃ-Materiály, 2021, 3, 904-916.	17.3	57
8	Photonic Synapses with Ultraâ€Low Energy Consumption Based on Vertical Organic Fieldâ€Effect Transistors. Advanced Optical Materials, 2021, 9, 2002030.	7.3	50
9	Highly Sensitive Artificial Visual Array Using Transistors Based on Porphyrins and Semiconductors. Small, 2021, 17, e2005491.	10.0	49
10	Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy, 2022, 95, 106987.	16.0	48
11	Retina-Inspired Organic Heterojunction-Based Optoelectronic Synapses for Artificial Visual Systems. Research, 2021, 2021, 7131895.	5.7	43
12	Artificial Synapses Based on Lead-Free Perovskite Floating-Gate Organic Field-Effect Transistors for Supervised and Unsupervised Learning. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43144-43154.	8.0	43
13	Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy, 2021, 87, 106197.	16.0	43
14	OFET chemical sensors: Chemical sensors based on ultrathin organic fieldâ€effect transistors. Polymer International, 2021, 70, 414-425.	3.1	40
15	Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal Physics D: Applied Physics, 2022, 55, 134001.	2.8	31
16	High Performance Ternary Organic Phototransistors with Photoresponse up to 2600 nm at Room Temperature. Advanced Functional Materials, 2021, 31, 2103787.	14.9	26
17	Highly Selective and Sensitive Detection of Volatile Sulfur Compounds by Ionically Conductive Metalâ€Organic Frameworks. Advanced Materials, 2021, 33, e2104120.	21.0	25
18	Low-power consumption light-stimulated synaptic transistors based on natural carotene and organic semiconductors. Chemical Communications, 2021, 57, 8300-8303.	4.1	22

#	Article	IF	Citations
19	Bioinspired organic optoelectronic synaptic transistors based on cellulose nanopaper and natural chlorophyll-a for neuromorphic systems. Npj Flexible Electronics, 2022, 6, .	10.7	21
20	Longâ€Term Stable and Tunable Highâ€Performance Photodetectors Based on Perovskite Microwires. Advanced Optical Materials, 2018, 6, 1800469.	7.3	19
21	Leadâ€Free Perovskitesâ€Based Photonic Synaptic Devices with Logic Functions. Advanced Materials Technologies, 2021, 6, 2100678.	5 . 8	18
22	Monolayer molecular crystals for low-energy consumption optical synaptic transistors. Nano Research, 2022, 15, 7639-7645.	10.4	18
23	Air-stable synaptic devices based on bismuth triiodide and carbon nanotubes. Nano Research, 2022, 15, 5435-5442.	10.4	12
24	Covalent Coupling of Porphyrins with Monolayer Graphene for Low-Voltage Synaptic Transistors. ACS Applied Materials & District Services, 2022, 14, 11699-11707.	8.0	10
25	Sensitive sensors based on bilayer organic field-effect transistors for detecting lithium-ion battery electrolyte leakage. Science China Materials, 2022, 65, 1187-1194.	6.3	9
26	Chemical sensors based on ionically conductive metal–organic frameworks for selective cadaverine detection. Journal of Materials Chemistry C, 2022, 10, 5497-5504.	5.5	6
27	2022 roadmap on neuromorphic devices and applications research in China. Neuromorphic Computing and Engineering, 2022, 2, 042501.	5.9	4
28	Facile, Lowâ€Cost and Flexible Ammonia Sensor Arrays Based on Metallic Ion Charge Carriers and Polymer Matrices. Advanced Materials Technologies, 0, , 2100789.	5.8	1