
Ingo Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome triplication found across the tribe <i>Brassiceae</i> . Genome Research, 2005, 15, 516-525.	5.5	598
2	DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO Journal, 2002, 21, 6549-6559.	7.8	439
3	Interphase chromosomes in <i>Arabidopsis</i> are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14584-14589.	7.1	429
4	Mechanisms of chromosome number reduction in <i>Arabidopsis thaliana</i> and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5224-5229.	7.1	360
5	Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO Journal, 2004, 23, 4146-4155.	7.8	359
6	Chromosomal histone modification patterns – from conservation to diversity. Trends in Plant Science, 2006, 11, 199-208.	8.8	338
7	An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant Journal, 2000, 21, 97-108.	5.7	330
8	Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma, 2004, 112, 308-315.	2.2	289
9	Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics, 2011, 27, 207-216.	6.7	252
10	Opportunism knocks?. Nature, 2000, 404, 120-120.	27.8	244
11	A <i>TY3/GYPSY</i> retrotransposonâ€like sequence localizes to the centromeric regions of cereal chromosomes . Plant Journal, 1998, 16, 721-728.	5.7	231
12	Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma, 2004, 113, 258-269.	2.2	206
13	Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant Journal, 2003, 33, 967-973.	5.7	186
14	Loading of <i>Arabidopsis</i> Centromeric Histone CENH3 Occurs Mainly during G2 and Requires the Presence of the Histone Fold Domain. Plant Cell, 2006, 18, 2443-2451.	6.6	181
15	Chromosome evolution. Current Opinion in Plant Biology, 2007, 10, 109-115.	7.1	181
16	Histone H4 Acetylation of Euchromatin and Heterochromatin Is Cell Cycle Dependent and Correlated with Replication Rather Than with Transcription. Plant Cell, 2000, 12, 2087-2100.	6.6	163
17	Chromosome painting in <i>Arabidopsis thaliana</i> . Plant Journal, 2001, 28, 689-697.	5.7	156
18	How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences?. Chromosome Research, 1996, 4, 207-213.	2.2	144

#	Article	IF	CITATIONS
19	Histone modifications in <i>Arabidopsis</i> – high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant Journal, 2003, 33, 471-480.	5.7	144
20	DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 493, 87-93.	1.7	142
21	The Catalytically Active Tyrosine Residues of Both SPO11-1 and SPO11-2 Are Required for Meiotic Double-Strand Break Induction in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3090-3099.	6.6	125
22	Genome Stability and Evolution: Attempting a Holistic View. Trends in Plant Science, 2016, 21, 749-757.	8.8	125
23	TheTy1-copia group retrotransposons ofAllium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Research, 1996, 4, 357-364.	2.2	124
24	Chromosome painting in plants. Cytotechnology, 2001, 23, 57-69.	0.7	123
25	Changes in 5S rDNA Chromatin Organization and Transcription during Heterochromatin Establishment in Arabidopsis. Plant Cell, 2003, 15, 2929-2939.	6.6	120
26	The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant Journal, 1999, 18, 675-679.	5.7	116
27	Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma, 2001, 110, 83-92.	2.2	113
28	An Archaebacterial Topoisomerase Homolog Not Present in Other Eukaryotes Is Indispensable for Cell Proliferation of Plants. Current Biology, 2002, 12, 1787-1791.	3.9	113
29	Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell, 2021, 33, 3207-3234.	6.6	111
30	MOM1 mediates DNAâ€methylationâ€independent silencing of repetitive sequences in Arabidopsis. EMBO Reports, 2006, 7, 1273-1278.	4.5	102
31	Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant Journal, 2001, 26, 275-282.	5.7	99
32	DNA and proteins of plant centromeres. Current Opinion in Plant Biology, 2003, 6, 554-560.	7.1	99
33	The Arabidopsis HETEROCHROMATIN PROTEIN1 Homolog (TERMINAL FLOWER2) Silences Genes Within the Euchromatic Region but not Genes Positioned in Heterochromatin. Plant and Cell Physiology, 2005, 46, 1747-1756.	3.1	98
34	The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 Complex Promotes Sister Chromatid Alignment and Homologous Recombination after DNA Damage in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2009, 21, 2688-2699.	6.6	98
35	Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant Journal, 2011, 68, 40-50.	5.7	94
36	Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Research, 2003, 11, 195-204.	2.2	92

#	Article	IF	CITATIONS
37	Terminal heterochromatin and alternative telomeric sequences in Allium cepa. , 1998, 6, 315-321.		91
38	The transcriptional response ofArabidopsisto genotoxic stress - a high-density colony array study (HDCA). Plant Journal, 2003, 35, 771-786.	5.7	91
39	The Inheritance of Apomixis in Poa pratensis Confirms a Five Locus Model with Differences in Gene Expressivity and Penetrance. Plant Cell, 2005, 17, 13-24.	6.6	88
40	The Triploid Endosperm Genome of Arabidopsis Adopts a Peculiar, Parental-Dosage-Dependent Chromatin Organization. Plant Cell, 2007, 19, 1782-1794.	6.6	85
41	Plant Chromosome Analysis and Sorting by Flow Cytometry. Critical Reviews in Plant Sciences, 1994, 13, 275-309.	5.7	81
42	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	5.7	81
43	Distribution of heterochromatin in a reconstructed karyotype of Vicia faba as identified by banding- and DNA-late replication patterns. Chromosoma, 1978, 69, 193-209.	2.2	80
44	Midiprep method for isolation of DNA from plants with a high content of polyphenolics. Nucleic Acids Research, 1993, 21, 3328-3330.	14.5	80
45	<i>Arabidopsis</i> KINETOCHORE NULL2 Is an Upstream Component for Centromeric Histone H3 Variant cenH3 Deposition at Centromeres. Plant Cell, 2013, 25, 3389-3404.	6.6	80
46	An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant Journal, 1998, 14, 489-495.	5.7	78
47	Organization and dynamics of plant interphase chromosomes. Trends in Plant Science, 2011, 16, 273-281.	8.8	77
48	Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Research, 1993, 1, 107-115.	2.2	76
49	Mobile nucleolus organizing regions (NORs) inAllium (Liliaceae s. lat.)? ? Inferences from the specifity of silver staining. Plant Systematics and Evolution, 1984, 144, 291-305.	0.9	74
50	Adaptation to alkylation damage in DNA measured by the comet assay. Environmental and Molecular Mutagenesis, 2000, 36, 146-150.	2.2	74
51	Chromosome ?painting? in plants ? a feasible technique?. Chromosoma, 1996, 104, 315-320.	2.2	72
52	Coevolution of apomixis and genome size within the genus Hypericum. Sexual Plant Reproduction, 2003, 16, 51-58.	2.2	70
53	Position-dependent NOR activity in barley. Chromosoma, 1990, 99, 352-359.	2.2	68
54	Interphase Chromosome Arrangement in <i>Arabidopsis thaliana</i> Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division. Genetics, 2007, 176, 853-863.	2.9	67

#	Article	IF	CITATIONS
55	Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific Reports, 2018, 8, 5838.	3.3	66
56	Generating a high onfidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. Plant Journal, 2018, 96, 670-684.	5.7	64
57	Molecular-cytogenetic characterization of the Vicia faba genomeheterochromatin differentiation, replication patterns and sequence localization. Chromosome Research, 1998, 6, 219-230.	2.2	63
58	Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma, 1998, 107, 272-276.	2.2	61
59	Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between <i>Arabidopsis thaliana</i> and <i>Arabidopsis lyrata</i> . Plant Journal, 2006, 48, 771-783.	5.7	61
60	Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. Journal of Cell Science, 2005, 118, 3751-3758.	2.0	59
61	Sister Chromatids Are Often Incompletely Aligned in Meristematic and Endopolyploid Interphase Nuclei of <i>Arabidopsis thaliana</i> . Genetics, 2006, 172, 467-475.	2.9	58
62	The MCM-Binding Protein ETG1 Aids Sister Chromatid Cohesion Required for Postreplicative Homologous Recombination Repair. PLoS Genetics, 2010, 6, e1000817.	3.5	58
63	Chromosome ?painting? in plants ? a feasible technique?. Chromosoma, 1996, 104, 315-320.	2.2	58
64	Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid. Plant Cell, 2014, 26, 2156-2167.	6.6	55
65	Cytogenetic Analyses of <i>Arabidopsis</i> . , 2006, 323, 173-186.		52
66	Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. Nucleic Acids Research, 2010, 38, 7526-7537.	14.5	52
67	Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Research, 2010, 18, 841-850.	2.2	50
68	Stable gene replacement in barley by targeted double-strand break induction. Journal of Experimental Botany, 2016, 67, 1433-1445.	4.8	49
69	Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Scientific Reports, 2019, 9, 3234.	3.3	49
70	Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean. Molecular Genetics and Genomics, 1994, 243, 173-177.	2.4	46
71	A taxonomic revision of <i>Lemna</i> sect. <i>Uninerves</i> (Lemnaceae). Taxon, 2020, 69, 56-66.	0.7	46
72	Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma, 2009, 118, 591-605.	2.2	45

#	Article	IF	CITATIONS
73	Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. Plant Genome, 2015, 8, eplantgenome2015.04.0021.	2.8	45
74	Primed in situ labelling facilitates flow sorting of similar sized chromosomes. Plant Journal, 1995, 7, 1039-1044.	5.7	44
75	Induction of telomereâ€mediated chromosomal truncation and stability of truncated chromosomes in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 68, 28-39.	5.7	44
76	Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Research, 1996, 4, 191-194.	2.2	42
77	Chromosomal localization of rDNA in the Brassicaceae. Genome, 2005, 48, 341-346.	2.0	42
78	The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma, 2013, 122, 517-533.	2.2	42
79	Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture. International Journal of Molecular Sciences, 2020, 21, 3488.	4.1	42
80	The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Research, 2008, 16, 891-898.	2.2	41
81	Telomere-mediated truncation of barley chromosomes. Chromosoma, 2012, 121, 181-190.	2.2	41
82	Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus <i>Genlisea</i> . Plant Journal, 2015, 84, 1087-1099.	5.7	41
83	Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma, 1997, 106, 193-197.	2.2	40
84	The E2F transcription factor family regulates <i>CENH3</i> expression in <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 68, 646-656.	5.7	40
85	The mapâ€based genome sequence of <i><scp>S</scp>pirodela polyrhiza</i> aligned with its chromosomes, a reference for karyotype evolution. New Phytologist, 2016, 209, 354-363.	7.3	40
86	Phylogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae). Plant Systematics and Evolution, 1983, 143, 245-256.	0.9	38
87	The comet assay detects adaptation to MNU-induced DNA damage in barley. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 493, 95-100.	1.7	38
88	Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma, 2007, 116, 507-510.	2.2	38
89	Detection of specific DNA lesions by a combination of comet assay and FISH in plants. , 2000, 35, 132-138.		37
90	Recognition of A. thaliana centromeres by heterologous CENH3 requires high similarity to the endogenous protein. Plant Molecular Biology, 2011, 75, 253-261.	3.9	36

#	Article	IF	CITATIONS
91	Mechanisms of Chromosome Rearrangements. , 2013, , 137-147.		36
92	Regulation of Arabidopsis thaliana 5S rRNA Genes. Plant and Cell Physiology, 2007, 48, 745-752.	3.1	34
93	Deletionâ€bias in <scp>DNA</scp> doubleâ€strand break repair differentially contributes to plant genome shrinkage. New Phytologist, 2017, 214, 1712-1721.	7.3	34
94	Endogenous sequence patterns predispose the repair modes of <scp>CRISPR</scp> /Cas9â€induced <scp>DNA</scp> doubleâ€stranded breaks in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 92, 57-67.	5.7	34
95	Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma, 2000, 109, 482-489.	2.2	33
96	Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Molecular Biology, 2007, 65, 615-626.	3.9	33
97	Deposition, turnover, and release of CENH3 at Arabidopsis centromeres. Chromosoma, 2011, 120, 633-640.	2.2	32
98	Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific <i>Arabidopsis</i> hybrids. Genome, 2004, 47, 954-960.	2.0	31
99	Engineered Plant Minichromosomes: A Bottom-Up Success?. Plant Cell, 2008, 20, 8-10.	6.6	31
100	Comparative analysis of the functional genome architecture of animal and plant cell nuclei. Chromosome Research, 2003, 11, 471-484.	2.2	30
101	The nodule-specific VfENOD-GRP3 gene encoding a glycine-rich early nodulin is located on chromosome I of Vicia faba L. and is predominantly expressed in the interzone II-III of root nodules. Plant Molecular Biology, 1995, 28, 405-421.	3.9	29
102	Loading of the centromeric histone H3 variant during meiosis–how does it differ from mitosis?. Chromosoma, 2014, 123, 491-497.	2.2	29
103	What is behind "centromere repositioningâ€ ? . Chromosoma, 2018, 127, 229-234.	2.2	29
104	Sister chromatid exchanges and heterochromatin. Human Genetics, 1981, 57, 119-30.	3.8	28
105	Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant Journal, 1993, 3, 883-886.	5.7	28
106	Alteration of basic chromosome number by fusion–fission cycles. Genome, 1995, 38, 1289-1292.	2.0	28
107	Karyotype analysis of Helianthus annuus using Giemsa banding and fluorescence in situ hybridization. Chromosome Research, 1997, 5, 451-456.	2.2	27
108	A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 517, 47-51.	1.7	27

#	Article	IF	CITATIONS
109	DNA hypomethylation reduces homologous pairing of inserted tandem repeat arrays in somatic nuclei of Arabidopsis thaliana. Plant Journal, 2005, 44, 531-540.	5.7	27
110	Engineered Plant Minichromosomes: A Resurrection of B Chromosomes?. Plant Cell, 2007, 19, 2323-2327.	6.6	27
111	Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma, 2008, 117, 267-276.	2.2	27
112	Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma, 2017, 126, 729-739.	2.2	27
113	In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Chromosome Research, 1996, 4, 277-281.	2.2	25
114	Late-replicating satellites: something for all centromeres?. Trends in Genetics, 1998, 14, 385-386.	6.7	25
115	Chromatin associations in Arabidopsis interphase nuclei. Frontiers in Genetics, 2014, 5, 389.	2.3	25
116	Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei. Molecular Genetics and Genomics, 2007, 278, 167-176.	2.1	24
117	Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species. Frontiers in Microbiology, 2015, 6, 526.	3.5	23
118	Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Scientific Reports, 2020, 10, 19230.	3.3	23
119	Direct labelling of BAC-DNA by rolling-circle amplification. Plant Journal, 2006, 45, 857-862.	5.7	22
120	Structureâ€function relationships during transgenic telomerase expression in <i>Arabidopsis</i> . Physiologia Plantarum, 2013, 149, 114-126.	5.2	22
121	Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant Journal, 2020, 102, 68-84.	5.7	22
122	Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environmental and Experimental Botany, 2007, 60, 404-411.	4.2	21
123	Chromosomal Distribution and Functional Interpretation of Epigenetic Histone Marks in Plants. , 2012, , 231-253.		19
124	The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Frontiers in Bioscience - Landmark, 2008, Volume, 5202.	3.0	19
125	De novo generation of plant centromeres at tandem repeats. Chromosoma, 2013, 122, 233-241.	2.2	18
126	Aneuploids as a key for new molecular cloning strategies: development of DNA markers by microdissection using Triticum aestivum-Aegilops markgrafii chromosome addition line B. Euphytica, 1996, 89, 41-47.	1.2	17

#	Article	IF	CITATIONS
127	Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma, 2011, 120, 609-619.	2.2	17
128	Patterns of nucleotide asymmetries in plant and animal genomes. BioSystems, 2013, 111, 181-189.	2.0	17
129	Non-random intrachromosomal distribution of radiation-induced chromatid aberrations in Vicia faba. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1976, 35, 79-90.	1.0	16
130	Non-random chromosome arrangement in triploid endosperm nuclei. Chromosoma, 2017, 126, 115-124.	2.2	16
131	On the origin of hydroxyurea-induced chromatid aberrations in G2 chromosomes with BrdUrd in only one of the sister chromatids. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1983, 108, 301-316.	1.0	15
132	Removal ofO6-methylguanine from plant DNA in vivo is accelerated under conditions of clastogenic adaptation. , 1997, 29, 400-405.		15
133	Hypomethylation and hypermethylation of the tandem repetitive 5SÂrRNA genes in Arabidopsis. Plant Journal, 2008, 54, 299-309.	5.7	15
134	Formation and repair ofO6-methylguanine in recombination hot spots of plant chromosomes. Environmental and Molecular Mutagenesis, 1997, 29, 394-399.	2.2	13
135	Transient CENP-E-like kinetochore proteins in plants. Chromosome Research, 2002, 10, 561-570.	2.2	13
136	Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion "hot spots― Chromosoma, 2008, 117, 261-266.	2.2	13
137	Localization of 5S RNA genes on tobacco chromosomes. Chromosome Research, 2000, 8, 85-87.	2.2	12
138	No Evidence for "Break-Induced Replication―in a Higher Plant – But Break-Induced Conversion May Occur. Frontiers in Plant Science, 2011, 2, 8.	3.6	11
139	Boon and Bane of DNA Double-Strand Breaks. International Journal of Molecular Sciences, 2021, 22, 5171.	4.1	10
140	Are SCE frequencies indicative of adaptive response of plant cells?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 211, 301-306.	1.0	9
141	Restriction Endonuclease (Re-) Banding of Plant Chromosomes. Caryologia, 1990, 43, 117-130.	0.3	9
142	Chromosome painting in plants. , 2001, , 57-69.		9
143	A Specific α-Tubulin is Associated with the Initiation of Parthenogenesis in †Salmon' Wheat Lines. Hereditas, 2004, 126, 219-224.	1.4	9
144	Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds. Chromosoma, 2021, 130, 15-25.	2.2	9

#	Article	lF	CITATIONS
145	Chromosome identification for the carnivorous plant Genlisea margaretae. Chromosoma, 2017, 126, 389-397.	2.2	7
146	'Sex and crime' in evolution - why sexuality was so successful. Genes and Genetic Systems, 2011, 86, 1-6.	0.7	6
147	The Ribosomal DNA Loci of the Ancient Monocot Pistia stratiotes L. (Araceae) Contain Different Variants of the 35S and 5S Ribosomal RNA Gene Units. Frontiers in Plant Science, 2022, 13, 819750.	3.6	6
148	Recurrent sequence exchange between homeologous grass chromosomes. Plant Journal, 2015, 84, 747-759.	5.7	5
149	Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Frontiers in Plant Science, 2015, 6, 613.	3.6	5
150	DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between <i>Lathyrus </i> species. Genome, 2000, 43, 1027-1032.	2.0	5
151	Engineered plant minichromosomes. International Journal of Developmental Biology, 2013, 57, 651-657.	0.6	5
152	Karyotype Reconstruction in Plants with Special Emphasis on Vicia faba L Developments in Plant Genetics and Breeding, 1991, 2, 113-140.	0.6	5
153	Organization of 5 S RNA genes in vicia faba. FEBS Letters, 1978, 96, 19-22.	2.8	3
154	People must be judged in the context of their time. Nature, 2000, 404, 330-330.	27.8	3
155	Silver Staining of Nucleolus Organizing Regions inZea Mays. Caryologia, 1985, 38, 331-334.	0.3	2
156	The cytogenetics and genomics of crop plants. Chromosome Research, 2007, 15, 1-2.	2.2	2
157	Some past developments and open questions in understanding the biology of nucleus. Nucleus (India), 2017, 60, 247-249.	2.2	2
	Histone H4 Acetylation of Euchromatin and Heterochromatin Is Cell Cycle Dependent and Correlated		
158	with Replication Rather Than with Transcription. Plant Cell, 2000, 12, 2087.	6.6	1
158 159	with Replication Rather Than with Transcription. Plant Cell, 2000, 12, 2087. Between Genes and Genomes – Future Challenges for Cytogenetics. Frontiers in Genetics, 2011, 2, 30.	6.6 2.3	1
	with Replication Rather Than with Transcription. Plant Cell, 2000, 12, 2087.		
159	with Replication Rather Than with Transcription. Plant Cell, 2000, 12, 2087. Between Genes and Genomes – Future Challenges for Cytogenetics. Frontiers in Genetics, 2011, 2, 30.		1