Jay R Hesselberth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410400/publications.pdf

Version: 2024-02-01

65 papers 3,848 citations

147801 31 h-index 57 g-index

86 all docs 86 docs citations

86 times ranked 6820 citing authors

#	Article	IF	Citations
1	Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nature Methods, 2009, 6, 283-289.	19.0	533
2	Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nature Medicine, 2018, 24, 1859-1866.	30.7	496
3	A protein interaction network of the malaria parasite Plasmodium falciparum. Nature, 2005, 438, 103-107.	27.8	480
4	Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Research, 2002, 30, 108e-108.	14.5	155
5	The <scp>R</scp> tc <scp>B RNA</scp> ligase is an essential component of the metazoan unfolded protein response. EMBO Reports, 2014, 15, 1278-1285.	4.5	139
6	Single-cell RNA sequencing identifies TGF- \hat{l}^2 as a key regenerative cue following LPS-induced lung injury. JCI Insight, 2019, 4, .	5.0	111
7	Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nature Methods, 2015, 12, 251-257.	19.0	101
8	In Vitro Selection of RNA Molecules That Inhibit the Activity of Ricin A-chain. Journal of Biological Chemistry, 2000, 275, 4937-4942.	3.4	91
9	In vitro selection of nucleic acids for diagnostic applications. Reviews in Molecular Biotechnology, 2000, 74, 15-25.	2.8	90
10	High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Research, 2014, 24, 1534-1542.	5.5	81
11	TCR signal strength controls thymic differentiation of iNKT cell subsets. Nature Communications, 2018, 9, 2650.	12.8	79
12	Simultaneous detection of diverse analytes with an aptazyme ligase array. Analytical Biochemistry, 2003, 312, 106-112.	2.4	73
13	clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Research, 2020, 9, 223.	1.6	71
14	Genome-Wide Analysis of miRNA-mRNA Interactions in Marrow Stromal Cells. Stem Cells, 2014, 32, 662-673.	3.2	67
15	HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. Breast Cancer Research and Treatment, 2014, 146, 85-97.	2.5	66
16	Binding specificity of Toll-like receptor cytoplasmic domains. European Journal of Immunology, 2006, 36, 742-753.	2.9	63
17	Lives that introns lead after splicing. Wiley Interdisciplinary Reviews RNA, 2013, 4, 677-691.	6.4	63
18	Mitochondrial energy failure in HSD10 disease is due to defective mtDNA transcript processing. Mitochondrion, 2015, 21, 1-10.	3.4	55

#	Article	IF	CITATIONS
19	Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro-Oncology, 2022, 24, 273-286.	1.2	52
20	valr: Reproducible genome interval analysis in R. F1000Research, 2017, 6, 1025.	1.6	50
21	Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. Rna, 2010, 16, 621-631.	3.5	49
22	RNase L Targets Distinct Sites in Influenza A Virus RNAs. Journal of Virology, 2015, 89, 2764-2776.	3.4	49
23	Chronic Liver Disease in Humans Causes Expansion and Differentiation of Liver Lymphatic Endothelial Cells. Frontiers in Immunology, 2019, 10, 1036.	4.8	47
24	Single-Cell RNA Sequencing of Childhood Ependymoma Reveals Neoplastic Cell Subpopulations That Impact Molecular Classification and Etiology. Cell Reports, 2020, 32, 108023.	6.4	47
25	Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Research, 2014, 42, 5202-5216.	14.5	46
26	A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data. Bioinformatics, 2010, 26, i334-i342.	4.1	43
27	Computational selection of nucleic acid biosensors via a slip structure model. Biosensors and Bioelectronics, 2007, 22, 1939-1947.	10.1	40
28	Global analysis of RNA cleavage by 5′-hydroxyl RNA sequencing. Nucleic Acids Research, 2015, 43, e108-e108.	14.5	39
29	Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. ELife, 2016, 5, .	6.0	37
30	Genome-wide identification of spliced introns using a tiling microarray. Genome Research, 2007, 17, 503-509.	5.5	36
31	Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics, 2016, 17, 338.	2.8	36
32	Optimization and optimality of a short ribozyme ligase that joins non-Watson–Crick base pairings. Rna, 2001, 7, 513-523.	3.5	35
33	A homolog of lariat-debranching enzyme modulates turnover of branched RNA. Rna, 2014, 20, 1337-1348.	3.5	34
34	Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. Rna, 2018, 24, 1481-1495.	3.5	31
35	Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator. ELife, 2015, 4, .	6.0	29
36	High-throughput profiling of amino acids in strains of the <i>Saccharomyces cerevisiae</i> deletion collection. Genome Research, 2010, 20, 1288-1296.	5.5	28

#	Article	IF	Citations
37	Physiologic RNA targets and refined sequence specificity of coronavirus EndoU. Rna, 2020, 26, 1976-1999.	3.5	24
38	Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly. Nucleic Acids Research, 2013, 41, 3805-3818.	14.5	22
39	Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. ELife, 2019, 8, .	6.0	21
40	clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Research, 2020, 9, 223.	1.6	21
41	Alternative Polyadenylation of <i>PRELID1</i> Regulates Mitochondrial ROS Signaling and Cancer Outcomes. Molecular Cancer Research, 2017, 15, 1741-1751.	3.4	19
42	Genetic bypass of essential RNA repair enzymes in budding yeast. Rna, 2018, 24, 313-323.	3.5	19
43	Molecular tracking devices quantify antigen distribution and archiving in the murine lymph node. ELife, 2021, 10, .	6.0	18
44	MARCO ⁺ lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO Journal, 2021, 40, e108966.	7.8	18
45	Coordination between Drosophila Arc1 and a specific population of brain neurons regulates organismal fat. Developmental Biology, 2015, 405, 280-290.	2.0	17
46	Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries. Nucleic Acids Research, 2019, 47, e20-e20.	14.5	16
47	Switching nucleic acids for antibodies. Nature Biotechnology, 2001, 19, 313-314.	17.5	14
48	Redistribution of ECâ€SOD resolves bleomycinâ€induced inflammation <i>via</i> increased apoptosis of recruited alveolar macrophages. FASEB Journal, 2019, 33, 13465-13475.	0.5	14
49	Dynamic RNA Regulation in the Brain Underlies Physiological Plasticity in a Hibernating Mammal. Frontiers in Physiology, 2020, 11, 624677.	2.8	10
50	Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics, 2021, 18, 1500-1514.	4.4	9
51	Enhancing Hematopoiesis from Murine Embryonic Stem Cells through MLL1-Induced Activation of a Rac/Rho/Integrin Signaling Axis. Stem Cell Reports, 2020, 14, 285-299.	4.8	8
52	Cell-level metadata are indispensable for documenting single-cell sequencing datasets. PLoS Biology, 2021, 19, e3001077.	5. 6	7
53	A (ribo) switch in the paradigms of genetic regulation. Nature Structural Biology, 2002, 9, 891-893.	9.7	6
54	Localization of Cdc7 Protein Kinase During DNA Replication in <i>Saccharomyces cerevisiae</i> Genes, Genomes, Genetics, 2017, 7, 3757-3774.	1.8	6

#	Article	IF	CITATIONS
55	Simultaneous measurement of biochemical phenotypes and gene expression in single cells. Nucleic Acids Research, 2020, 48, e59-e59.	14.5	6
56	Combinatorial methods: aptamers and aptazymes. , 1999, 3858, 126.		5
57	High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes. Methods in Molecular Biology, 2018, 1672, 63-76.	0.9	5
58	O Cdc7 kinase where art thou?. Current Genetics, 2018, 64, 677-680.	1.7	1
59	High Throughput Sequencing Following Cross-Linked Immune Precipitation (HITS-CLIP) of Argonaute (AGO) Identifies Mir-9 As a Regulator of MMP2 in the Marrow Microenvironment (ME). Blood, 2011, 118, 2392-2392.	1.4	1
60	Nucleosome patterning evolution: steady aim despite moving targets. Molecular Systems Biology, 2010, 6, 376.	7.2	0
61	EPEN-21. SINGLE CELL RNASEQ IDENTIFIES A PUTATIVE CANCER STEM CELL POPULATION IN POSTERIOR FOSSA EPN. Neuro-Oncology, 2018, 20, i77-i77.	1.2	O
62	High Throughput Sequencing Following Cross-Linked Immune Precipitation (HITS-CLIP) of Argonaute (AGO) Identifies Mir-193a as a Regulator of Jagged1 In Marrow Stromal Cells Blood, 2010, 116, 3847-3847.	1.4	0
63	Ribose-seq: ribonucleotides in DNA to Illumina library. Protocol Exchange, 0, , .	0.3	O
64	MBRS-46. CHARTING NEOPLASTIC AND IMMUNE CELL HETEROGENEITY IN HUMAN AND GEM MODELS OF MEDULLOBLASTOMA USING scRNAseq. Neuro-Oncology, 2020, 22, iii406-iii406.	1.2	0
65	EPEN-31. SINGLE-CELL RNAseq OF CHILDHOOD EPENDYMOMA REVEALS DISTINCT NEOPLASTIC CELL SUBPOPULATIONS THAT IMPACT ETIOLOGY, MOLECULAR CLASSIFICATION AND OUTCOME. Neuro-Oncology, 2020, 22, iii314-iii314.	1.2	O