Xuefeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410377/publications.pdf

Version: 2024-02-01

41344 46799 9,197 194 49 89 citations h-index g-index papers 194 194 194 4712 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Exploring Lorentz Invariance Violation from Ultrahigh-Energy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> Rays Observed by LHAASO. Physical Review Letters, 2022, 128, 051102.	7.8	19
2	Direct Estimate of the Post-Newtonian Parameter and Cosmic Curvature from Galaxy-scale Strong Gravitational Lensing. Astrophysical Journal Letters, 2022, 927, L1.	8.3	10
3	Diagnosing the Circumburst Environment with Multiband Gamma-Ray Burst Radio Afterglows. Astrophysical Journal, 2022, 927, 84.	4.5	1
4	A semi-analytical solution to the forward–reverse shock hydrodynamics of the gamma-ray burst afterglow. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4887-4898.	4.4	2
5	Antarctic Survey Telescope 3-3: Overview, System Performance and Preliminary Observations at Yaoan, Yunnan. Universe, 2022, 8, 303.	2.5	1
6	Multiwavelength View of the Close-by GRB 190829A Sheds Light on Gamma-Ray Burst Physics. Astrophysical Journal Letters, 2022, 931, L19.	8.3	19
7	Self-organized criticality in multi-pulse gamma-ray bursts. Frontiers of Physics, 2021, 16, 1.	5.0	11
8	The SiTian Project. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200628.	0.8	23
9	A comparison between repeating bursts of FRB 121102 and giant pulses from Crab pulsar and its applications. Frontiers of Physics, 2021, 16, 1.	5.0	13
10	Observation of the Crab Nebula with LHAASO-KM2A â° a performance study *. Chinese Physics C, 2021, 45, 025002.	3.7	67
11	Polarization Predictions in the GRB Prompt Phase with the Internal Shock Model. Astrophysical Journal, 2021, 909, 184.	4.5	4
12	Testing fundamental physics with astrophysical transients. Frontiers of Physics, 2021, 16, 1.	5.0	26
13	Polarization of GRB prompt emission and its application to POLAR's data. Research in Astronomy and Astrophysics, 2021, 21, 055.	1.7	2
14	Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 \hat{I}^3 -ray Galactic sources. Nature, 2021, 594, 33-36.	27.8	262
15	Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">J</mml:mi><mml:mn>0622</mml:mn><mml:mo>+</mml:mo><mml:mo><mml:mn>3749<td>n><i>< </i> mml:n</td><td>nrow> </td></mml:mn></mml:mo></mml:mrow></mml:math>	n> <i>< </i> mml:n	nrow>
16	Constraints on Lorentz Invariance Violation with Multiwavelength Polarized Astrophysical Sources. Galaxies, 2021, 9, 44.	3.0	9
17	Construction and on-site performance of the LHAASO WFCTA camera. European Physical Journal C, 2021, 81, 1.	3.9	18
18	Peta–electron volt gamma-ray emission from the Crab Nebula. Science, 2021, 373, 425-430.	12.6	86

#	Article	IF	CITATIONS
19	Design and Testing of the Front-End Electronics of WCDA in LHAASO. IEEE Transactions on Nuclear Science, 2021, 68, 2257-2267.	2.0	0
20	A dynamic range extension system for LHAASO WCDA-1. Radiation Detection Technology and Methods, 2021, 5, 520-530.	0.8	1
21	Revisiting the luminosity and redshift distributions of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2021, 508, 52-68.	4.4	6
22	Lorentz Invariance Violation Limits from the Spectral-lag Transition of GRB 190114C. Astrophysical Journal, 2021, 906, 8.	4.5	27
23	Similar Scale-invariant Behaviors between Soft Gamma-Ray Repeaters and an Extreme Epoch from FRB 121102. Astrophysical Journal, 2021, 920, 153.	4.5	14
24	The photosphere emission spectrum of hybrid relativistic outflow for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6047-6058.	4.4	13
25	Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA. Radiation Detection Technology and Methods, 2021, 5, 531.	0.8	1
26	Parkes Transient Events. I. Database of Single Pulses, Initial Results, and Missing Fast Radio Bursts. Astrophysical Journal, Supplement Series, 2020, 249, 14.	7.7	7
27	The Bright Reverse Shock Emission in the Optical Afterglows of Gamma-Ray Bursts in a Stratified Medium. Astrophysical Journal, 2020, 895, 94.	4.5	18
28	Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows. European Physical Journal Plus, 2020, 135, 1.	2.6	4
29	Combined limit on the photon mass with nine localized fast radio bursts. Research in Astronomy and Astrophysics, 2020, 20, 206.	1.7	7
30	Pair Separation in Parallel Electric Field in Magnetar Magnetosphere and Narrow Spectra of Fast Radio Bursts. Astrophysical Journal Letters, 2020, 901, L13.	8.3	40
31	GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era. Experimental Astronomy, 2019, 48, 77-95.	3.7	38
32	Constraining the evolution of the baryon fraction in the IGM with FRB and $\langle i \rangle H \langle i \rangle (\langle i \rangle z \langle i \rangle)$ data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 039-039.	5.4	21
33	"Double-tracking―Characteristics of the Spectral Evolution of GRB 131231A: Synchrotron Origin?. Astrophysical Journal, 2019, 884, 109.	4.5	26
34	Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses. Astrophysical Journal Letters, 2019, 882, L13.	8.3	26
35	The Time-resolved Spectra of Photospheric Emission from a Structured Jet for Gamma-Ray Bursts. Astrophysical Journal, 2019, 882, 26.	4.5	31
36	The luminosity function and formation rate of a complete sample of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4607-4613.	4.4	17

#	Article	IF	Citations
37	Precision test of the weak equivalence principle from gamma-ray burst polarization. Physical Review D, 2019, 99, .	4.7	7
38	Polarization with a Three-dimensional Mixed Magnetic Field and Its Application to GRB 170817A. Astrophysical Journal, 2019, 870, 96.	4.5	7
39	Exoplanets in the Antarctic Sky. I. The First Data Release of AST3-II (CHESPA) and New Found Variables within the Southern CVZ of <i>TESS</i> . Astrophysical Journal, Supplement Series, 2019, 240, 16.	7.7	8
40	Exoplanets in the Antarctic Sky. II. 116 Transiting Exoplanet Candidates Found by AST3-II (CHESPA) within the Southern CVZ of TESS. Astrophysical Journal, Supplement Series, 2019, 240, 17.	7.7	13
41	Multimessenger tests of Einstein's weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar. Journal of High Energy Astrophysics, 2019, 22, 1-4.	6.7	18
42	Polarization of Astrophysical Events with Precessing Jets. Astrophysical Journal, 2019, 878, 140.	4.5	4
43	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	50
44	Detailed polarization measurements of the prompt emission of five gamma-ray bursts. Nature Astronomy, 2019, 3, 258-264.	10.1	62
45	A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication. Astrophysical Journal, Supplement Series, 2018, 234, 26.	7.7	20
46	Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons. Astrophysical Journal, Supplement Series, 2018, 234, 3.	7.7	49
47	Brightening X-Ray/Optical/Radio Emission of GW170817/SGRB 170817A: Evidence for an Electron–Positron Wind from the Central Engine?. Astrophysical Journal Letters, 2018, 856, L33.	8.3	29
48	Fast radio bursts from primordial black hole binaries coalescence. Physical Review D, 2018, 98, .	4.7	21
49	Robust limits on photon mass from statistical samples of extragalactic radio pulsars. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	5.4	18
50	Multicolor Blackbody Emission in GRB 081221. Astrophysical Journal, 2018, 866, 13.	4.5	25
51	The Origin of the Prompt Emission for Short GRB 170817A: Photosphere Emission or Synchrotron Emission?. Astrophysical Journal, 2018, 860, 72.	4.5	41
52	Constraining external reverse shock physics of gamma-ray bursts from ROTSE-III limits. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5142-5153.	4.4	1
53	Cosmology with Gravitational Wave/Fast Radio Burst Associations. Astrophysical Journal Letters, 2018, 860, L7.	8.3	31
54	Probing Magnetic Fields of GRB X-Ray Flares with Polarization Observations. Astrophysical Journal, 2018, 862, 115.	4.5	8

#	Article	IF	CITATIONS
55	Constraining the Type of Central Engine of GRBs with Swift Data. Astrophysical Journal, Supplement Series, 2018, 236, 26.	7.7	43
56	Gamma-Ray Burst Optical Afterglows with Two-component Jets: Polarization Evolution Revisited. Astrophysical Journal, 2018, 860, 44.	4.5	11
57	The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817. Astrophysical Journal, 2018, 860, 57.	4.5	84
58	A New Test of Lorentz Invariance Violation: The Spectral Lag Transition of GRB 160625B. Astrophysical Journal Letters, 2017, 834, L13.	8.3	45
59	Lorentz factor — Beaming corrected energy/luminosity correlations and GRB central engine models. Journal of High Energy Astrophysics, 2017, 13-14, 1-9.	6.7	24
60	Impact of a Locally Measured H ₀ on the Interpretation of Cosmic-chronometer Data. Astrophysical Journal, 2017, 835, 270.	4.5	17
61	New limits on the photon mass with radio pulsars in the Magellanic clouds. Research in Astronomy and Astrophysics, 2017, 17, 13.	1.7	19
62	Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B. Astrophysical Journal, 2017, 842, 115.	4.5	25
63	Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2906-2912.	4.4	25
64	Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. Science Bulletin, 2017, 62, 1433-1438.	9.0	69
65	New test of weak equivalence principle using polarized light from astrophysical events. Physical Review D, 2017, 95, .	4.7	16
66	A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors. Astrophysical Journal, 2017, 844, 126.	4.5	30
67	Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 035-035.	5.4	33
68	Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. II. Temporal Evolution of the Central Engine Parameters during the Prompt and Afterglow Phases. Astrophysical Journal, 2017, 849, 47.	4.5	49
69	Gamma-ray burst cosmology: Hubble diagram and star formation history. International Journal of Modern Physics D, 2017, 26, 1730002.	2.1	14
70	A Further Test of Lorentz Violation from the Rest-frame Spectral Lags of Gamma-Ray Bursts. Astrophysical Journal, 2017, 851, 127.	4. 5	24
71	Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A. Astrophysical Journal Letters, 2017, 850, L41.	8.3	31
72	The Observer's Guide to the Gamma-Ray Burst Supernova Connection. Advances in Astronomy, 2017, 2017, 1-41.	1.1	188

#	Article	IF	CITATIONS
73	Gamma-ray burst cosmology: Hubble diagram and star formation history. , 2017, , .		o
74	TESTS OF THE EINSTEIN EQUIVALENCE PRINCIPLE USING TeV BLAZARS. Astrophysical Journal Letters, 2016, 818, L2.	8.3	40
75	eXTP: Enhanced X-ray Timing and Polarization mission. Proceedings of SPIE, 2016, , .	0.8	106
76	A TRIPLE-ENERGY-SOURCE MODEL FOR SUPERLUMINOUS SUPERNOVA iPTF13ehe. Astrophysical Journal, 2016, 828, 87.	4.5	30
77	REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS. Astrophysical Journal, 2016, 829, 27.	4.5	139
78	Testing Einstein's Equivalence Principle with multi-band Very Long Baseline Array measurements of AGN core shifts. Journal of High Energy Astrophysics, 2016, 9-10, 39-45.	6.7	1
79	POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS. Astrophysical Journal, 2016, 816, 73.	4.5	22
80	Constraining the mass of the photon with gamma-ray bursts. Journal of High Energy Astrophysics, 2016, 11-12, 20-28.	6.7	13
81	TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS. Astrophysical Journal, 2016, 826, 128.	4.5	4
82	IMPRINTS OF ELECTRON–POSITRON WINDS ON THE MULTIWAVELENGTH AFTERGLOWS OF GAMMA-RAY BURSTS. Astrophysical Journal, 2016, 825, 107.	4.5	28
83	FAST RADIO BURSTS FROM THE INSPIRAL OF DOUBLE NEUTRON STARS. Astrophysical Journal Letters, 2016, 822, L7.	8.3	153
84	Testing Einstein's weak equivalence principle with gravitational waves. Physical Review D, 2016, 94, .	4.7	41
85	Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	5.4	30
86	The H ii galaxy Hubble diagram strongly favours <i>R</i> _h = <i>ct</i> over ηCDM. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1144-1152.	4.4	39
87	CONSTRAINTS ON THE PHOTON MASS WITH FAST RADIO BURSTS. Astrophysical Journal Letters, 2016, 822, L15.	8.3	61
88	OPTICAL TRANSIENTS POWERED BY MAGNETARS: DYNAMICS, LIGHT CURVES, AND TRANSITION TO THE NEBULAR PHASE. Astrophysical Journal, 2016, 821, 22.	4.5	30
89	SOLVING THE ⁵⁶ Ni PUZZLE OF MAGNETAR-POWERED BROAD-LINED TYPE IC SUPERNOVAE. Astrophysical Journal, 2016, 831, 41.	4.5	15
90	COSMIC EVOLUTION OF LONG GAMMA-RAY BURST LUMINOSITY. Astrophysical Journal, 2016, 820, 66.	4.5	22

#	Article	IF	CITATIONS
91	Testing Einstein's Equivalence Principle with supercluster Laniakea's gravitational field. Journal of High Energy Astrophysics, 2016, 9-10, 35-38.	6.7	9
92	Long GRBs as a tool to investigate star formation in dark matter halos. Journal of High Energy Astrophysics, 2016, 9-10, 1-8.	6.7	3
93	GRBs and Fundamental Physics. Space Science Reviews, 2016, 202, 195-234.	8.1	9
94	PROBING THE BIRTH OF POST-MERGER MILLISECOND MAGNETARS WITH X-RAY AND GAMMA-RAY EMISSION. Astrophysical Journal, 2016, 823, 15.	4.5	19
95	GRBs and Fundamental Physics. Space Sciences Series of ISSI, 2016, , 197-236.	0.0	O
96	Testing Einstein's Equivalence Principle With Fast Radio Bursts. Physical Review Letters, 2015, 115, 261101.	7.8	100
97	Gamma-Ray Burst in Swift and Fermi Era. Advances in Astronomy, 2015, 2015, 1-1.	1.1	0
98	Utilizing the Updated Gamma-Ray Bursts and Type Ia Supernovae to Constrain the Cardassian Expansion Model and Dark Energy. Advances in Astronomy, 2015, 2015, 1-12.	1.1	8
99	A CORRELATED STUDY OF OPTICAL AND X-RAY AFTERGLOWS OF GRBs. Astrophysical Journal, 2015, 805, 13.	4.5	31
100	PHOTOMETRY OF VARIABLE STARS FROM THE THU-NAOC TRANSIENT SURVEY. I. THE FIRST TWO YEARS. Astronomical Journal, 2015, 150, 107.	4.7	10
101	COSMIC TRANSIENTS TEST EINSTEIN'S EQUIVALENCE PRINCIPLE OUT TO GeV ENERGIES. Astrophysical Journal, 2015, 810, 121.	4.5	57
102	SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE. Astrophysical Journal, 2015, 799, 107.	4.5	77
103	A COMPARATIVE ANALYSIS OF THE SUPERNOVA LEGACY SURVEY SAMPLE WITH Î>CDM AND THE <i>R</i> ++= <i>ct</i> +++ <td>4.7</td> <td>57</td>	4.7	57
104	CONSTRAINTS ON THE BULK LORENTZ FACTORS OF GRB X-RAY FLARES. Astrophysical Journal, 2015, 807, 92.	4.5	26
105	GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA. Astrophysical Journal, 2015, 807, 163.	4.5	84
106	A UNIFIED ENERGY-RESERVOIR MODEL CONTAINING CONTRIBUTIONS FROM \${}^{56}mathrm{Ni}\$ AND NEUTRON STARS AND ITS IMPLICATION FOR LUMINOUS TYPE IC SUPERNOVAE. Astrophysical Journal, 2015, 807, 147.	4.5	37
107	THE AGE–REDSHIFT RELATIONSHIP OF OLD PASSIVE GALAXIES. Astronomical Journal, 2015, 150, 35.	4.7	14
108	TESTING COSMOLOGICAL MODELS WITH TYPE Ic SUPER LUMINOUS SUPERNOVAE. Astronomical Journal, 2015, 149, 165.	4.7	19

#	Article	IF	Citations
109	SIGNATURE OF A SPIN-UP MAGNETAR FROM MULTI-BAND AFTERGLOW REBRIGHTENING OF GRB 100814A. Astrophysical Journal, 2015, 805, 88.	4.5	7
110	Radio afterglows and host galaxies of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1815-1823.	4.4	10
111	A COMPARISON OF COSMOLOGICAL MODELS USING STRONG GRAVITATIONAL LENSING GALAXIES. Astronomical Journal, 2015, 149, 2.	4.7	27
112	Cosmological tests using the angular size of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 447, 479-485.	4.4	22
113	High energy emission from gamma-ray bursts. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 119505-119505.	0.4	0
114	A DOUBLE NEUTRON STAR MERGER ORIGIN FOR THE COSMOLOGICAL RELATIVISTIC FADING SOURCE PTF11agg?. Astrophysical Journal Letters, 2014, 781, L10.	8.3	18
115	The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station. Proceedings of SPIE, 2014, , .	0.8	41
116	Fall back accretion and energy injections in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3642-3650.	4.4	21
117	DISTRIBUTIONS OF GAMMA-RAY BURSTS AND BLAZARS IN THE <i>>L</i> _p -ei>E _p -PLANE AND POSSIBLE IMPLICATIONS FOR THEIR RADIATION PHYSICS. Astrophysical Journal, 2014, 793, 36.	4.5	19
118	A COMPARISON OF COSMOLOGICAL MODELS USING TIME DELAY LENSES. Astrophysical Journal, 2014, 788, 190.	4.5	27
119	THE ORIGIN OF THE PLATEAU AND LATE REBRIGHTENING IN THE AFTERGLOW OF GRB 120326A. Astrophysical Journal, 2014, 785, 113.	4.5	17
120	REVISITING THE EMISSION FROM RELATIVISTIC BLAST WAVES IN A DENSITY-JUMP MEDIUM. Astrophysical Journal, 2014, 792, 31.	4.5	21
121	THE OPTICAL LUMINOSITY FUNCTION OF GAMMA-RAY BURSTS DEDUCED FROM ROTSE-III OBSERVATIONS. Astrophysical Journal, 2014, 795, 103.	4.5	3
122	Variability of the giant X-ray bump in GRB 121027A and its possible origin. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2375-2379.	4.4	18
123	Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3329-3341.	4.4	54
124	TIME EVOLUTION OF FLARES IN GRB 130925A: JET PRECESSION IN A BLACK HOLE ACCRETION SYSTEM. Astrophysical Journal Letters, 2014, 781, L19.	8.3	28
125	A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astronomy Reviews, 2013, 57, 141-190.	12.8	175
126	EARLY AFTERGLOWS OF GAMMA-RAY BURSTS IN A STRATIFIED MEDIUM WITH A POWER-LAW DENSITY DISTRIBUTION. Astrophysical Journal, 2013, 776, 120.	4.5	57

#	Article	IF	CITATIONS
127	THE GAMMA-RAY BURST HUBBLE DIAGRAM AND ITS IMPLICATIONS FOR COSMOLOGY. Astrophysical Journal, 2013, 772, 43.	4.5	70
128	Compton scattering of self-absorbed synchrotron emission. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2520-2531.	4.4	29
129	A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. II. AFTERGLOW ONSET AND LATE RE-BRIGHTENING COMPONENTS. Astrophysical Journal, 2013, 774, 13.	4.5	90
130	DELAYED ENERGY INJECTION MODEL FOR GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal, 2013, 779, 28.	4.5	24
131	IS THE LATE NEAR-INFRARED BUMP IN SHORT-HARD GRB 130603B DUE TO THE LI-PACZYNSKI KILONOVA?. Astrophysical Journal Letters, 2013, 775, L19.	8.3	17
132	INTERPRETATION OF THE UNPRECEDENTEDLY LONG-LIVED HIGH-ENERGY EMISSION OF GRB 130427A. Astrophysical Journal Letters, 2013, 773, L20.	8.3	55
133	GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION. Astrophysical Journal Letters, 2013, 767, L36.	8.3	67
134	BRIGHT BROADBAND AFTERGLOWS OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS. Astrophysical Journal, 2013, 771, 86.	4.5	99
135	A SUPRAMASSIVE MAGNETAR CENTRAL ENGINE FOR GRB 130603B. Astrophysical Journal Letters, 2013, 779, L25.	8.3	82
136	Signature of gravitational wave radiation in afterglows of short gamma-ray bursts?. Physical Review D, 2013, 88, .	4.7	73
137	Possible high-energy neutrino and photon signals from gravitational wave bursts due to double neutron star mergers. Physical Review D, 2013, 88, .	4.7	19
138	Physical origin of multi-wavelength emission of GRB 100418A and implications for its progenitor. Research in Astronomy and Astrophysics, 2012, 12, 411-418.	1.7	2
139	MODELING PHOTODISINTEGRATION-INDUCED TeV PHOTON EMISSION FROM LOW-LUMINOSITY GAMMA-RAY BURSTS. Astronomical Journal, 2012, 143, 115.	4.7	1
140	PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW. Astrophysical Journal, 2012, 751, 90.	4.5	41
141	GRB 110721A: PHOTOSPHERE "DEATH LINE―AND THE PHYSICAL ORIGIN OF THE GRB BAND FUNCTION. Astrophysical Journal Letters, 2012, 758, L34.	8.3	37
142	Is There a Relation between Duration and <i>E</i> _{iso} in Gamma-Ray Bursts?. Proceedings of the International Astronomical Union, 2012, 8, 223-224.	0.0	2
143	GRB 090510: Early LAT Emission is not from External Shock. , 2011, , .		0
144	THE LATE PEAKING AFTERGLOW OF GRB 100418A. Astrophysical Journal, 2011, 727, 132.	4.5	32

#	Article	IF	CITATIONS
145	DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A. Astrophysical Journal, 2011, 729, 114.	4.5	179
146	A PHOTOMETRIC REDSHIFT OF <i>z</i> â^1/4 9.4 FOR GRB 090429B. Astrophysical Journal, 2011, 736, 7.	4.5	352
147	ON THE HIGH-ENERGY EMISSION OF THE SHORT GRB 090510. Astrophysical Journal, 2011, 733, 22.	4.5	61
148	A STATISTICAL MODEL FOR THE Î ³ -RAY VARIABILITY OF THE CRAB NEBULA. Astrophysical Journal Letters, 2011, 730, L15.	8.3	27
149	A Photosphere-Internal Shock Model of Fermiâ^•LAT GRBs. , 2011, , .		О
150	The Late-time detections of the X-ray Afterglow of GRB 060729 with Chandra. , 2011, , .		0
151	Photosphere-internal shock model of gamma-ray bursts: case studies of Fermi/LAT bursts. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1663-1680.	4.4	92
152	A COMPREHENSIVE ANALYSIS OF (i>FERMIGAMMA-RAY BURST DATA. I. SPECTRAL COMPONENTS AND THE POSSIBLE PHYSICAL ORIGINS OF LAT/GBM GRBs. Astrophysical Journal, 2011, 730, 141.	4.5	202
153	LATE-TIME DETECTIONS OF THE X-RAY AFTERGLOW OF GRB 060729 WITH <i>CHANDRA</i> à€"THE LATEST DETECTIONS EVER OF AN X-RAY AFTERGLOW. Astrophysical Journal, 2010, 711, 1008-1016.	4.5	27
154	<i>>FERMI</i> DETECTION OF DELAYED GeV EMISSION FROM THE SHORT GAMMA-RAY BURST 081024B. Astrophysical Journal, 2010, 712, 558-564.	4.5	54
155	<i>SWIFT</i> AND <i>FERMI</i> OBSERVATIONS OF THE EARLY AFTERGLOW OF THE SHORT GAMMA-RAY BURST 090510. Astrophysical Journal Letters, 2010, 709, L146-L151.	8.3	130
156	The afterglow and host galaxy of GRBâ \in %090205: evidence of a Ly- $\langle i \rangle$ Î $\pm \langle j \rangle$ emitter at z = 4.65. Astronomy and Astrophysics, 2010, 522, A20.	5.1	19
157	KLEIN-NISHINA EFFECTS ON THE HIGH-ENERGY AFTERGLOW EMISSION OF GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 712, 1232-1240.	4.5	74
158	<i>FERMI</i> OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A. Astrophysical Journal Letters, 2010, 717, L127-L132.	8.3	26
159	Magnetic energy injection in GRB 080913. Science China: Physics, Mechanics and Astronomy, 2010, 53, 262-264.	5.1	2
160	Diffuse high energy neutrinos and cosmic rays from hyperflares of soft-gamma repeaters. New Astronomy, 2010, 15, 292-296.	1.8	4
161	<i>FERMI</i> OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES. Astrophysical Journal, 2010, 716, 1178-1190.	4.5	306
162	Models of the Prompt and High Energy Emission of GRB. , 2010, , .		1

#	Article	IF	CITATIONS
163	AN UP-SCATTERED COCOON EMISSION MODEL OF GAMMA-RAY BURST HIGH-ENERGY LAGS. Astrophysical Journal, 2009, 707, 1404-1416.	4.5	57
164	DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF <i>>z </i> > = 6.7 GRB 080913, <i>z </i> = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs. Astrophysical Journal, 2009, 703, 1696-1724.	4.5	307
165	GRB 080913 AT REDSHIFT 6.7. Astrophysical Journal, 2009, 693, 1610-1620.	4.5	175
166	Early afterglows from radially structured outflows and the application to X-ray shallow decays. Research in Astronomy and Astrophysics, 2009, 9, $911-920$.	1.7	2
167	The Everlasting X-ray Afterglow of GRB 060729. , 2009, , .		0
168	Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science, 2009, 323, 1688-1693.	12.6	523
169	A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 2009, 462, 331-334.	27.8	454
170	Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature, 2008, 455, 183-188.	27.8	449
171	GRB 060206: Evidence of Precession of Central Engine. AIP Conference Proceedings, 2008, , .	0.4	1
172	GRB 060206: hints of precession of the central engine?. Astronomy and Astrophysics, 2008, 487, 503-508.	5.1	15
173	Estimation of the detectability of optical orphan afterglows. Astronomy and Astrophysics, 2007, 461, 115-119.	5.1	19
174	X-ray flares from late internal and late external shocks. Advances in Space Research, 2007, 40, 1208-1213.	2.6	4
175	External shock model for the radio afterglows of giant flares from soft \hat{l}^3 -ray repeaters. AIP Conference Proceedings, 2006, , .	0.4	0
176	X-ray Flares from Postmerger Millisecond Pulsars. Science, 2006, 311, 1127-1129.	12.6	295
177	A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR 1806-20. Astrophysical Journal, 2005, 629, L81-L84.	4.5	11
178	An Energetic Blast Wave from the 2004 December 27 Giant Flare of the Soft Gamma-Ray Repeater SGR 1806-20. Astrophysical Journal, 2005, 623, L29-L32.	4.5	23
179	Testing Gammaâ€Ray Burst Jet Structure with the Distribution of Gammaâ€Ray Energy Release. Astrophysical Journal, 2005, 634, 1155-1165.	4.5	5
180	Analytical Light Curves in the Realistic Model for Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2005, 619, 968-982.	4.5	33

#	Article	IF	CITATIONS
181	Gamma-ray bursts: polarization of afterglows from two-component jets. Monthly Notices of the Royal Astronomical Society, 2005, 357, 1197-1204.	4.4	35
182	Early afterglows in wind environments revisited. Monthly Notices of the Royal Astronomical Society, 2005, 363, 93-106.	4.4	65
183	Afterglow Light Curves of Jetted Gamma-ray Burst Ejecta in Stellar Winds. Research in Astronomy and Astrophysics, 2004, 4, 455-472.	1.1	14
184	Rebrightening of XRF 030723: Further Evidence for a Twoâ€Component Jet in a Gammaâ€Ray Burst. Astrophysical Journal, 2004, 605, 300-306.	4.5	104
185	Testing the predictions of the universal structured jet model of gamma-ray bursts by simulations. Monthly Notices of the Royal Astronomical Society, 2004, 354, 81-85.	4.4	6
186	The Luminosity- E p Relation within Gamma-Ray Bursts and the Implications for Fireball Models. Astrophysical Journal, 2004, 606, L29-L32.	4.5	95
187	Jet Break Time–Flux Density Relationship and Constraints on Physical Parameters of Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2004, 615, 359-365.	4.5	24
188	Optical flashes and very early afterglows in wind environments. Monthly Notices of the Royal Astronomical Society, 2003, 342, 1131-1138.	4.4	89
189	Gammaâ€Ray Bursts from Neutron Star Kicks. Astrophysical Journal, 2003, 594, 919-923.	4.5	18
190	GRB 030226 in a Density-Jump Medium. Astrophysical Journal, 2003, 591, L21-L24.	4.5	65
191	Optical Flash and Radio Flare in Wind Environment. Symposium - International Astronomical Union, 2003, 214, 343-344.	0.1	0
192	Study of History Effect of Vortex Matter by AC Susceptibility. Journal of Superconductivity and Novel Magnetism, 2001, 14, 501-507.	0.5	1
193	The Numerical Study of Influence of Flux Creep on AC Losses in Superconductors. Journal of Superconductivity and Novel Magnetism, 2001, 14, 631-635.	0.5	5
194	Voltage Relaxation and Its Influence on Critical Current Measurements. Journal of Superconductivity and Novel Magnetism, 2000, 13, 453-458.	0.5	6