Ronald S Veazey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5409950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progesterone implants enhance SIV vaginal transmission and early virus load. Nature Medicine, 1996, 2, 1084-1089.	30.7	513
2	Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nature Medicine, 2003, 9, 343-346.	30.7	453
3	Prevention of Vaginal SHIV Transmission in Rhesus Macaques Through Inhibition of CCR5. Science, 2004, 306, 485-487.	12.6	364
4	Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus–cell fusion. Nature, 2005, 438, 99-102.	27.8	302
5	Deregulation of cell growth by the K1 gene of Karposi's sarcoma-associated herpesvirus. Nature Medicine, 1998, 4, 435-440.	30.7	294
6	Acute Loss of Intestinal CD4+ T Cells Is Not Predictive of Simian Immunodeficiency Virus Virulence. Journal of Immunology, 2007, 179, 3035-3046.	0.8	253
7	Pathogenic Simian Immunodeficiency Virus Infection Is Associated with Expansion of the Enteric Virome. Cell, 2012, 151, 253-266.	28.9	252
8	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11181-11186.	7.1	243
9	Identifying the Target Cell in Primary Simian Immunodeficiency Virus (SIV) Infection: Highly Activated Memory CD4 ⁺ T Cells Are Rapidly Eliminated in Early SIV Infection In Vivo. Journal of Virology, 2000, 74, 57-64.	3.4	240
10	Dynamics of CCR5 Expression by CD4+ T Cells in Lymphoid Tissues during Simian Immunodeficiency Virus Infection. Journal of Virology, 2000, 74, 11001-11007.	3.4	215
11	SIVmac pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. Aids, 2002, 16, 1489-1496.	2.2	215
12	Paucity of CD4+CCR5+ T cells is a typical feature of natural SIV hosts. Blood, 2007, 109, 1069-1076.	1.4	190
13	Th17 Cells Are Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell Host and Microbe, 2016, 19, 529-540.	11.0	184
14	Molecular Epidemiology of Simian Immunodeficiency Virus SIVsm in U.S. Primate Centers Unravels the Origin of SIVmac and SIVstm. Journal of Virology, 2005, 79, 8991-9005.	3.4	159
15	A macaque model of HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4425-4429.	7.1	150
16	Use of a Small Molecule CCR5 Inhibitor in Macaques to Treat Simian Immunodeficiency Virus Infection or Prevent Simian–Human Immunodeficiency Virus Infection. Journal of Experimental Medicine, 2003, 198, 1551-1562.	8.5	141
17	Defining the Interaction of HIV-1 with the Mucosal Barriers of the Female Reproductive Tract. Journal of Virology, 2013, 87, 11388-11400.	3.4	140
18	Simian Immunodeficiency Virus SIVagm.sab Infection of Caribbean African Green Monkeys: a New Model for the Study of SIV Pathogenesis in Natural Hosts. Journal of Virology, 2006, 80, 4858-4867.	3.4	139

#	Article	IF	CITATIONS
19	Protection of Rhesus Macaques from Vaginal Infection by Vaginally Delivered Maraviroc, an Inhibitor of HIVâ€1 Entry via the CCR5 Coâ€Receptor. Journal of Infectious Diseases, 2010, 202, 739-744.	4.0	138
20	Whither or Wither Microbicides?. Science, 2008, 321, 532-534.	12.6	126
21	Classic AIDS in a Sooty Mangabey after an 18-Year Natural Infection. Journal of Virology, 2004, 78, 8902-8908.	3.4	124
22	Vaginal CD4+T Cells Express High Levels of CCR5 and Are Rapidly Depleted in Simian Immunodeficiency Virus Infection. Journal of Infectious Diseases, 2003, 187, 769-776.	4.0	121
23	Pathogenicity of Simian-Human Immunodeficiency Virus SHIV-89.6P and SIVmac Is Attenuated in Cynomolgus Macaques and Associated with Early T-Lymphocyte Responses. Journal of Virology, 2005, 79, 8878-8885.	3.4	120
24	Current Concepts in AIDS Pathogenesis: Insights from the SIV/Macaque Model. Annual Review of Medicine, 2007, 58, 461-476.	12.2	120
25	The mucosal immune system: primary target for HIV infection and AIDS. Trends in Immunology, 2001, 22, 626-633.	6.8	119
26	Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. Journal of Medical Primatology, 2011, 40, 233-243.	0.6	111
27	Characterization of Gut-Associated Lymphoid Tissue (GALT) of Normal Rhesus Macaques. Clinical Immunology and Immunopathology, 1997, 82, 230-242.	2.0	104
28	Getting to the Guts of HIV Pathogenesis. Journal of Experimental Medicine, 2004, 200, 697-700.	8.5	100
29	HIV swiftly guts the immune system. Nature Medicine, 2005, 11, 469-470.	30.7	97
30	Protection of macaques from vaginal SHIV challenge by an orally delivered CCR5 inhibitor. Nature Medicine, 2005, 11, 1293-1294.	30.7	93
31	Early Regeneration of Thymic Progenitors in Rhesus Macaques Infected with Simian Immunodeficiency Virus. Journal of Experimental Medicine, 1998, 187, 1767-1778.	8.5	91
32	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	30.7	85
33	Vaginal Challenge with an SIV-Based Dual Reporter System Reveals That Infection Can Occur throughout the Upper and Lower Female Reproductive Tract. PLoS Pathogens, 2014, 10, e1004440.	4.7	84
34	Functional Cure of SIVagm Infection in Rhesus Macaques Results in Complete Recovery of CD4+ T Cells and Is Reverted by CD8+ Cell Depletion. PLoS Pathogens, 2011, 7, e1002170.	4.7	82
35	Identification of Rhesus Macaque Genital Microbiota by 16S Pyrosequencing Shows Similarities to Human Bacterial Vaginosis: Implications for Use as an Animal Model for HIV Vaginal Infection. AIDS Research and Human Retroviruses, 2010, 26, 193-200.	1.1	77
36	Intestinal double-positive CD4+CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines. European Journal of Immunology, 2006, 36, 583-592.	2.9	74

#	Article	IF	CITATIONS
37	The Gastrointestinal Tract and AIDS Pathogenesis. Gastroenterology, 2009, 136, 1966-1978.	1.3	74
38	A Comparison of Lower Genital Tract Glycogen and Lactic Acid Levels in Women and Macaques: Implications for HIV and SIV Susceptibility. AIDS Research and Human Retroviruses, 2012, 28, 76-81.	1.1	71
39	Mucosal immunology of <scp>HIV</scp> infection. Immunological Reviews, 2013, 254, 10-33.	6.0	70
40	Topically Applied Recombinant Chemokine Analogues Fully Protect Macaques from Vaginal Simianâ€Human Immunodeficiency Virus Challenge. Journal of Infectious Diseases, 2009, 199, 1525-1527.	4.0	68
41	Persistent Simian Immunodeficiency Virus Infection Drives Differentiation, Aberrant Accumulation, and Latent Infection of Germinal Center Follicular T Helper Cells. Journal of Virology, 2016, 90, 1578-1587.	3.4	67
42	Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection. Blood, 2007, 109, 1174-1181.	1.4	66
43	Emergence and Kinetics of Simian Immunodeficiency Virus-Specific CD8 + T Cells in the Intestines of Macaques during Primary Infection. Journal of Virology, 2001, 75, 10515-10519.	3.4	61
44	Sustained Release of the CCR5 Inhibitors CMPD167 and Maraviroc from Vaginal Rings in Rhesus Macaques. Antimicrobial Agents and Chemotherapy, 2012, 56, 2251-2258.	3.2	60
45	Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus. Journal of Virology, 2000, 74, 8762-8766.	3.4	57
46	Animal Models for Microbicide Studies. Current HIV Research, 2012, 10, 79-87.	0.5	56
47	Direct Inoculation of Simian Immunodeficiency Virus from Sooty Mangabeys in Black Mangabeys () Tj ETQq1 1 Pathologic Outcomes of Experimental Infection. Journal of Virology, 2004, 78, 11506-11518.	0.784314 3.4	rgBT /Overloc 55
48	Non-aqueous silicone elastomer gels as a vaginal microbicide delivery system for the HIV-1 entry inhibitor maraviroc. Journal of Controlled Release, 2011, 156, 161-169.	9.9	53
49	Pharmacokinetics and efficacy of a vaginally administered maraviroc gel in rhesus macaques. Journal of Antimicrobial Chemotherapy, 2013, 68, 678-683.	3.0	53
50	Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies. Vaccine, 2017, 35, 536-543.	3.8	49
51	A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	49
52	An HSV-2 Trivalent Vaccine Is Immunogenic in Rhesus Macaques and Highly Efficacious in Guinea Pigs. PLoS Pathogens, 2017, 13, e1006141.	4.7	48
53	The mucosal immune system and HIV-1 infection. AIDS Reviews, 2003, 5, 245-52.	1.0	48
54	Elicitation of Simian Immunodeficiency Virus-Specific Cytotoxic T Lymphocytes in Mucosal Compartments of Rhesus Monkeys by Systemic Vaccination. Journal of Virology, 2002, 76, 11484-11490.	3.4	47

#	Article	IF	CITATIONS
55	Tropism-independent protection of macaques against vaginal transmission of three SHIVs by the HIV-1 fusion inhibitor T-1249. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10531-10536.	7.1	46
56	Early restoration of mucosal CD4 memory CCR5 T cells in the gut of SIV-infected rhesus predicts long term non-progression. Aids, 2007, 21, 2377-2385.	2.2	45
57	The Large Intestine as a Major Reservoir for Simian Immunodeficiency Virus in Macaques with Longâ€Term, Nonprogressing Infection. Journal of Infectious Diseases, 2010, 202, 1846-1854.	4.0	45
58	Visualization of HIV-1 Interactions with Penile and Foreskin Epithelia: Clues for Female-to-Male HIV Transmission. PLoS Pathogens, 2015, 11, e1004729.	4.7	45
59	Decreased CCR5 Expression on CD4+T Cells of SIV-Infected Sooty Mangabeys. AIDS Research and Human Retroviruses, 2003, 19, 227-233.	1.1	44
60	Macaque studies of vaccine and microbicide combinations for preventing HIV-1 sexual transmission. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8694-8698.	7.1	44
61	Neutralizing IgG at the Portal of Infection Mediates Protection against Vaginal Simian/Human Immunodeficiency Virus Challenge. Journal of Virology, 2013, 87, 11604-11616.	3.4	44
62	Th17 Cells Coordinate with Th22 Cells in Maintaining Homeostasis of Intestinal Tissues and both are Depleted in SIV-Infected Macaques. Journal of AIDS & Clinical Research, 2014, 05, .	0.5	44
63	Chronic Alcohol Consumption Results in Higher Simian Immunodeficiency Virus Replication in Mucosally Inoculated Rhesus Macaques. AIDS Research and Human Retroviruses, 2006, 22, 589-594.	1.1	43
64	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	6.4	43
65	Simian immunodeficiency virus (SIV)–specific cytotoxic T lymphocytes in gastrointestinal tissues of chronically SIV-infected rhesus monkeys. Blood, 2001, 98, 3757-3761.	1.4	41
66	Increased B7-H1 Expression on Dendritic Cells Correlates with Programmed Death 1 Expression on T Cells in Simian Immunodeficiency Virus-Infected Macaques and May Contribute to T Cell Dysfunction and Disease Progression. Journal of Immunology, 2010, 185, 7340-7348.	0.8	41
67	PD-1HIGH Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques. Frontiers in Immunology, 2014, 5, 85.	4.8	41
68	Early Immunologic Events in Mucosal and Systemic Lymphoid Tissues after Intrarectal Inoculation with Simian Immunodeficiency Virus. Journal of Infectious Diseases, 2001, 184, 1007-1014.	4.0	40
69	Intestinal Lymphocyte Subsets and Turnover Are Affected by Chronic Alcohol Consumption. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 41, 537-547.	2.1	38
70	Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virusâ€infected macaques. FASEB Journal, 2015, 29, 5072-5080.	0.5	38
71	Microbicide safety/efficacy studies in animals: macaques and small animal models. Current Opinion in HIV and AIDS, 2008, 3, 567-573.	3.8	37
72	Isolation and Characterization of Intestinal Epithelial Cells from Normal and SIV-Infected Rhesus Macaques. PLoS ONE, 2012, 7, e30247.	2.5	37

#	Article	IF	CITATIONS
73	Recombinant Simian Immunodeficiency Virus Expressing Green Fluorescent Protein Identifies Infected Cells in Rhesus Monkeys. AIDS Research and Human Retroviruses, 1999, 15, 11-21.	1.1	36
74	Simian Immunodeficiency Virus (SIV)-Specific CTL Are Present in Large Numbers in Livers of SIV-Infected Rhesus Monkeys. Journal of Immunology, 2000, 164, 6015-6019.	0.8	36
75	Single epitope mucosal vaccine delivered via immuno-stimulating complexes induces low level of immunity against simian-HIV. Vaccine, 2006, 24, 6839-6849.	3.8	36
76	Partial protection against multiple RT-SHIV162P3 vaginal challenge of rhesus macaques by a silicone elastomer vaginal ring releasing the NNRTI MC1220. Journal of Antimicrobial Chemotherapy, 2013, 68, 394-403.	3.0	36
77	A Role for Herpesvirus Saimiri orf14 in Transformation and Persistent Infection. Journal of Virology, 1998, 72, 6770-6776.	3.4	36
78	Distribution of simian immunodeficiency virus target cells in vaginal tissues of normal rhesus macaques: Implications for virus transmission. Journal of Reproductive Immunology, 2006, 72, 74-84.	1.9	35
79	Simian immunodeficiency virus selectively infects proliferating CD4+ T cells in neonatal rhesus macaques. Blood, 2010, 116, 4168-4174.	1.4	35
80	Immunodomination in the Evolution of Dominant Epitope-Specific CD8+T Lymphocyte Responses in Simian Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Immunology, 2006, 176, 319-328.	0.8	34
81	Virus-specific T cell responses in macaques acutely infected with SHIVsf162p3. Virology, 2007, 363, 36-47.	2.4	33
82	Increased Loss of CCR5 ⁺ CD45RA ^{â^'} CD4 ⁺ T Cells in CD8 ⁺ Lymphocyte-Depleted Simian Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2008, 82, 5618-5630.	3.4	33
83	Animal models for microbicide safety and efficacy testing. Current Opinion in HIV and AIDS, 2013, 8, 1.	3.8	33
84	Persistent Simian Immunodeficiency Virus Infection Causes Ultimate Depletion of Follicular Th Cells in AIDS. Journal of Immunology, 2015, 195, 4351-4357.	0.8	33
85	Simian Immunodeficiency Virus Infection in Neonatal Macaques. Journal of Virology, 2003, 77, 8783-8792.	3.4	32
86	Intestinal double-positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood, 2008, 112, 4981-4990.	1.4	32
87	Lack of Interleukin-10-Mediated Anti-Inflammatory Signals and Upregulated Interferon Gamma Production Are Linked to Increased Intestinal Epithelial Cell Apoptosis in Pathogenic Simian Immunodeficiency Virus Infection. Journal of Virology, 2014, 88, 13015-13028.	3.4	32
88	Double-Positive CD21+CD27+ B Cells Are Highly Proliferating Memory Cells and Their Distribution Differs in Mucosal and Peripheral Tissues. PLoS ONE, 2011, 6, e16524.	2.5	30
89	Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans -Infection of CD4 + T Cells. Journal of Virology, 2016, 90, 2928-2937.	3.4	30
90	Differential Effects of Simian Immunodeficiency Virus Infection on Immune Inductive and Effector Sites in the Rectal Mucosa of Rhesus Macaques. American Journal of Pathology, 2000, 157, 485-495.	3.8	28

#	Article	IF	CITATIONS
91	Substitution of <i>ras</i> for the Herpesvirus Saimiri STP Oncogene in Lymphocyte Transformation. Journal of Virology, 1998, 72, 3698-3704.	3.4	28
92	Increases in Endogenous or Exogenous Progestins Promote Virus-Target Cell Interactions within the Non-human Primate Female Reproductive Tract. PLoS Pathogens, 2016, 12, e1005885.	4.7	27
93	In vitro effects of the small-molecule protein kinase C agonists on HIV latency reactivation. Scientific Reports, 2016, 6, 39032.	3.3	27
94	Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR Journal, 2017, 58, 160-171.	1.8	27
95	Dynamics of Simian immunodeficiency virus-specific cytotoxic T-cell responses in tissues. Journal of Medical Primatology, 2003, 32, 194-200.	0.6	26
96	Global Dysfunction of CD4 T-Lymphocyte Cytokine Expression in Simian-Human Immunodeficiency Virus/SIV-Infected Monkeys Is Prevented by Vaccination. Journal of Virology, 2003, 77, 4695-4702.	3.4	26
97	CD8 down-regulation and functional impairment of SIV-specific cytotoxic T lymphocytes in lymphoid and mucosal tissues during SIV infection. Journal of Leukocyte Biology, 2013, 93, 943-950.	3.3	26
98	Comparison of the Vaginal environment of <i>Macaca mulatta</i> and <i>Macaca nemestrina</i> Throughout the Menstrual Cycle. American Journal of Reproductive Immunology, 2014, 71, 322-329.	1.2	26
99	Simian immunodeficiency virus infection in rhesus macaques induces selective tissue specific B cell defects in double positive CD21+CD27+ memory B cells. Clinical Immunology, 2011, 140, 223-228.	3.2	24
100	Gluten-sensitive enteropathy coincides with decreased capability of intestinal T cells to secrete IL-17 and IL-22 in a macaque model for celiac disease. Clinical Immunology, 2013, 147, 40-49.	3.2	24
101	Alcohol and HIV Effects on the Immune System. , 2015, 37, 287-97.		24
102	Control of viremia and maintenance of intestinal CD4+ memory T cells in SHIV162P3 infected macaques after pathogenic SIVMAC251 challenge. Virology, 2009, 387, 273-284.	2.4	23
103	Early Divergent Host Responses in SHIVsf162P3 and SIVmac251 Infected Macaques Correlate with Control of Viremia. PLoS ONE, 2011, 6, e17965.	2.5	23
104	Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques. Virology, 2013, 446, 77-85.	2.4	22
105	Design and Testing of a Cabotegravir Implant for HIV Prevention. Journal of Controlled Release, 2021, 330, 658-668.	9.9	22
106	Focused Examination of the Intestinal lamina Propria Yields Greater Molecular Insight into Mechanisms Underlying SIV Induced Immune Dysfunction. PLoS ONE, 2012, 7, e34561.	2.5	21
107	Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. GeroScience, 2019, 41, 739-757.	4.6	21
108	Informed consent disclosure to vaccine trial subjects of risk of COVIDâ€19 vaccines worsening clinical disease. International Journal of Clinical Practice, 2021, 75, e13795.	1.7	21

#	Article	IF	CITATIONS
109	Chronic alcohol increases CD8+ T-cell immunosenescence in simian immunodeficiency virus-infected rhesus macaques. Alcohol, 2015, 49, 759-765.	1.7	20
110	Long-term direct visualization of passively transferred fluorophore-conjugated antibodies. Journal of Immunological Methods, 2017, 450, 66-72.	1.4	20
111	Tenofovir Alafenamide for HIV Prevention: Review of the Proceedings from the Gates Foundation Long-Acting TAF Product Development Meeting. AIDS Research and Human Retroviruses, 2021, 37, 409-420.	1.1	20
112	Distinct Expression Patterns of CD69 in Mucosal and Systemic Lymphoid Tissues in Primary SIV Infection of Rhesus Macaques. PLoS ONE, 2011, 6, e27207.	2.5	19
113	Enteric Ganglionitis in Rhesus Macaques Infected with Simian Immunodeficiency Virus. Journal of Virology, 2007, 81, 6265-6275.	3.4	18
114	Focused Examination of the Intestinal Epithelium Reveals Transcriptional Signatures Consistent with Disturbances in Enterocyte Maturation and Differentiation during the Course of SIV Infection. PLoS ONE, 2013, 8, e60122.	2.5	18
115	Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Human Vaccines and Immunotherapeutics, 2015, 11, 2913-2922.	3.3	16
116	Effects of Treatment with Suppressive Combination Antiretroviral Drug Therapy and the Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid; (SAHA) on SIV-Infected Chinese Rhesus Macaques. PLoS ONE, 2014, 9, e102795.	2.5	16
117	Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication. EBioMedicine, 2017, 18, 204-215.	6.1	15
118	Intestinal CD4 Depletion in HIV / SIV Infection. Current Immunology Reviews, 2019, 15, 76-91.	1.2	15
119	Effects of Alcohol Consumption on Antigen-Specific Cellular and Humoral Immune Responses to SIV in Rhesus Macaques. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 332-341.	2.1	14
120	Development of serum antibodies during early infancy in rhesus macaques: Implications for humoral immune responses to vaccination at birth. Vaccine, 2014, 32, 5337-5342.	3.8	14
121	Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2017, 91, .	3.4	14
122	Cryopreservation of Human Mucosal Leukocytes. PLoS ONE, 2016, 11, e0156293.	2.5	14
123	Acute and Chronic T Cell Dynamics in the Livers of Simian Immunodeficiency Virus-Infected Macaques. Journal of Virology, 2012, 86, 5244-5252.	3.4	13
124	Profound loss of intestinal Tregs in acutely SIV-infected neonatal macaques. Journal of Leukocyte Biology, 2015, 97, 391-400.	3.3	13
125	Novel Transmitted/Founder Simian-Human Immunodeficiency Viruses for Human Immunodeficiency Virus Latency and Cure Research. Journal of Virology, 2020, 94, .	3.4	13
126	Divergent Kinetics of Proliferating T Cell Subsets in Simian Immunodeficiency Virus (SIV) Infection: SIV Eliminates the "First Responder―CD4 ⁺ T Cells in Primary Infection. Journal of Virology, 2013, 87, 7032-7038.	3.4	12

#	Article	IF	CITATIONS
127	Quantification of Viral RNA and DNA Positive Cells in Tissues From Simian Immunodeficiency Virus/Simian Human Immunodeficiency Virus Infected Controller and Progressor Rhesus Macaques. Frontiers in Microbiology, 2019, 10, 2933.	3.5	11
128	Chemokine receptor CCR5 correlates with functional CD8 ⁺ T cells in SIVâ€infected macaques and the potential effects of maraviroc on Tâ€cell activation. FASEB Journal, 2019, 33, 8905-8912.	0.5	10
129	Th17 T Cells and Immature Dendritic Cells Are the Preferential Initial Targets after Rectal Challenge with a Simian Immunodeficiency Virus-Based Replication-Defective Dual-Reporter Vector. Journal of Virology, 2021, 95, e0070721.	3.4	10
130	Reduced Expression of CD27 by Collagenase Treatment: Implications for Interpreting B Cell Data in Tissues. PLoS ONE, 2015, 10, e0116667.	2.5	10
131	Colposcopic imaging using visible-light optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 056003.	2.6	9
132	Dysregulation of IL-17/IL-22 Effector Functions in Blood and Gut Mucosal Gamma Delta T Cells Correlates With Increase in Circulating Leaky Gut and Inflammatory Markers During cART-Treated Chronic SIV Infection in Macaques. Frontiers in Immunology, 2021, 12, 647398.	4.8	9
133	Abnormal Tryptophan Metabolism in HIV and Mycobacterium tuberculosis Infection. Frontiers in Microbiology, 2021, 12, 666227.	3.5	9
134	Impact of Antiretroviral Therapy on Intestinal Lymphoid Tissues in HIV Infection. PLoS Medicine, 2006, 3, e515.	8.4	8
135	Chronic Binge Alcohol Administration Increases Intestinal T-Cell Proliferation and Turnover in Rhesus Macaques. Alcoholism: Clinical and Experimental Research, 2015, 39, 1373-1379.	2.4	8
136	Immune Responses and Viral Persistence in Simian/Human Immunodeficiency Virus SHIV.C.CH848-Infected Rhesus Macaques. Journal of Virology, 2021, 95, .	3.4	8
137	Inhibition of p38 MAPK in combination with ART reduces SIV-induced immune activation and provides additional protection from immune system deterioration. PLoS Pathogens, 2018, 14, e1007268.	4.7	6
138	Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis. Trends in Immunology, 2002, 23, 129.	6.8	5
139	Rapid downâ€regulation of γ c on T cells in early SIV infection correlates with impairment of Tâ€cell function. FASEB Journal, 2012, 26, 2294-2305.	0.5	5
140	BCL6 BTBâ€specific inhibition via FX1 treatment reduces Tfh cells and reverses lymphoid follicle hyperplasia in Indian rhesus macaque (Macaca mulatta). Journal of Medical Primatology, 2020, 49, 26-33.	0.6	5
141	Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIVâ€infected rhesus macaques. FASEB Journal, 2021, 35, e21282.	0.5	5
142	Increased Proviral DNA in Circulating Cells Correlates with Plasma Viral Rebound in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Antiretroviral Therapy Interruption. Journal of Virology, 2021, 95, .	3.4	5
143	Chronic binge alcohol increases susceptibility to rectal simian immunodeficiency virus infection in macaques. Aids, 2014, 28, 2485-2487.	2.2	4
144	Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus–Infected Neonatal Macaques. Journal of Immunology, 2018, 201, 1994-2003.	0.8	4

#	Article	IF	CITATIONS
145	A MUC16 IgG Binding Activity Selects for a Restricted Subset of IgG Enriched for Certain Simian Immunodeficiency Virus Epitope Specificities. Journal of Virology, 2020, 94, .	3.4	4
146	Anatomic Distribution of Intravenously Injected IgG Takes Approximately 1 Week to Achieve Stratum Corneum Saturation in Vaginal Tissues. Journal of Immunology, 2021, 207, 505-511.	0.8	4
147	Mucosal immunopathogenesis of HIV infection: implications for vaccine development. Future HIV Therapy, 2007, 1, 103-112.	0.4	3
148	Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections. AIDS Research and Therapy, 2016, 13, 41.	1.7	3
149	Immunopathogenesis in HIV-associated pediatric tuberculosis. Pediatric Research, 2022, 91, 21-26.	2.3	3
150	Development of an In Vivo Probe to Track SARS-CoV-2 Infection in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 810047.	4.8	3
151	Simian Immunodeficiency Virus Infection and Mucosal Immunity. , 2015, , 1493-1520.		2
152	Ex Vivo Evaluation of Mucosal Responses to Vaccination with ALVAC and AIDSVAX of Non-Human Primates. Vaccines, 2022, 10, 187.	4.4	2
153	Response: absence of CCR5 intracellular pools in most CD4 and CD8 T cells. Blood, 2011, 118, 1179-1179.	1.4	1
154	Maternal antibodies against tetanus toxoid do not inhibit potency of antibody responses to autologous antigen in newborn rhesus monkeys. Journal of Medical Primatology, 2018, 47, 35-39.	0.6	1
155	Systemic and Intestinal Viral Reservoirs in CD4+ T Cell Subsets in Primary SIV Infection. Viruses, 2021, 13, 2398.	3.3	1
156	106 Early events in vaginal HIV transmission. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	2.1	0
157	Mucosal Immune System and HIV/SIV. Current Immunology Reviews, 2019, 15, 2-3.	1.2	0
158	T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. Current Immunology Reviews, 2019, 15, 36-40.	1.2	0