V V Erokhin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5409637/publications.pdf

Version: 2024-02-01

109321 168389 3,945 184 35 53 citations h-index g-index papers 191 191 191 2575 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	3D Systems with Stochastic Architecture. , 2022, , 185-223.		O
2	Logic Elements and Neuron Networks. , 2022, , 101-122.		0
3	Memristive Devices and Circuits. , 2022, , 1-17.		O
4	Neuromorphic Systems. , 2022, , 123-183.		0
5	Study of memristive devices on the base of siloxane quatrothiophene dimer. AIP Conference Proceedings, 2022, , .	0.4	O
6	3D structure reconstruction of nanoengineered polymeric capsules using Coherent X-Ray diffraction imaging. MethodsX, 2021, 8, 101230.	1.6	2
7	On the organic memristive device resistive switching efficacy. Chaos, Solitons and Fractals, 2021, 143, 110549.	5.1	6
8	Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Scientific Reports, 2021, 11, 9380.	3.3	15
9	Design and implementation of memristive neuron leakage integrator, and learning feedback. , 2021, , .		O
10	The Role of the Internal Capacitance in Organic Memristive Device for Neuromorphic and Sensing Applications. Advanced Electronic Materials, 2021, 7, 2100494.	5.1	14
11	Simulation of a Central Pattern Generator Using Memristive Devices. Nanobiotechnology Reports, 2021, 16, 755-760.	0.6	2
12	Memristive Devices for Neuromorphic Applications: Comparative Analysis. BioNanoScience, 2020, 10, 834-847.	3.5	24
13	Effects of noise sourcing on organic memristive devices. Chaos, Solitons and Fractals, 2020, 141, 110319.	5.1	8
14	Modification of the porous glass filter with LbL technique for variable filtration applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125459.	4.7	3
15	Optical Monitoring of the Resistive States of a Polyanilineâ€Based Memristive Device. Advanced Electronic Materials, 2020, 6, 2000511.	5.1	16
16	On the Interpretation of Hysteresis Loop for Electronic and Ionic Currents in Organic Memristive Devices. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070055.	1.8	2
17	Associative STDP-like learning of neuromorphic circuits based on polyaniline memristive microdevices. Journal Physics D: Applied Physics, 2020, 53, 414001.	2.8	26
18	On the Interpretation of Hysteresis Loop for Electronic and Ionic Currents in Organic Memristive Devices. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900985.	1.8	10

#	Article	IF	Citations
19	Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Frontiers in Neuroscience, 2020, 14, 358.	2.8	143
20	Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110366.	5.0	26
21	Parylene Based Memristive Devices with Multilevel Resistive Switching for Neuromorphic Applications. Scientific Reports, 2019, 9, 10800.	3.3	92
22	On the resistive switching mechanism of parylene-based memristive devices. Organic Electronics, 2019, 74, 89-95.	2.6	44
23	Synaptic response in organic electrochemical transistor gated by a graphene electrode. Flexible and Printed Electronics, 2019, 4, 044002.	2.7	18
24	Coupling Cortical Neurons through Electronic Memristive Synapse. Advanced Materials Technologies, 2019, 4, 1800350.	5.8	63
25	Frequency driven organic memristive devices for neuromorphic short term and long term plasticity. Organic Electronics, 2019, 65, 434-438.	2.6	34
26	Polyaniline-based memristive microdevice with high switching rate and endurance. Applied Physics Letters, 2018, 112, .	3.3	55
27	Biolithography: Slime mould patterning of polyaniline. Applied Surface Science, 2018, 435, 1344-1350.	6.1	6
28	PhyChip: Growing Computers with Slime Mould. Natural Computing Series, 2018, , 111-128.	2.2	0
29	Organic memristive devices for perceptron applications. Journal Physics D: Applied Physics, 2018, 51, 284002.	2.8	22
30	Computers from Plants We Never Made: Speculations. Emergence, Complexity and Computation, 2018, , 357-387.	0.3	13
31	Neuromorphic Computing Based on Organic Memristive Systems. , 2018, , 411-429.		0
32	Planar and 3D fibrous polyaniline-based materials for memristive elements. Soft Matter, 2017, 13, 7300-7306.	2.7	15
33	Gold Nanoparticles Formation in Solid Polyelectrolyte: The Catalytic Effect of Halloysite Nanotubes. Journal of Nanoscience and Nanotechnology, 2017, 17, 5310-5317.	0.9	12
34	Coherent X-ray diffraction imaging of nanoengineered polymeric capsules. JETP Letters, 2017, 106, 540-543.	1.4	3
35	The memristive artificial neuron high level architecture for biologically inspired robotic systems. , 2017, , .		4
36	Organic Memristor Based Elements for Bio-inspired Computing. Emergence, Complexity and Computation, 2017, , 469-496.	0.3	10

#	Article	IF	CITATIONS
37	Emulation with Organic Memristive Devices of Impairment of LTP Mechanism in Neurodegenerative Disease Pathology. Neural Plasticity, 2017, 2017, 1-8.	2.2	15
38	Neuromorphic Computing Based on Organic Memristive Systems. , 2017, , 1-19.		1
39	Organic memristive device as transistor: Working principle and possible applications. , 2016, , .		0
40	First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Advances, 2016 , 6 , $.$	1.3	77
41	Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology. AIP Advances, 2016, 6, .	1.3	4
42	Spectrophotometric characterization of organic memristive devices. Organic Electronics, 2016, 38, 79-83.	2.6	21
43	Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies. Crystallography Reports, 2016, 61, 992-1001.	0.6	15
44	Solvent-Assisted Interfacial Assembly of Copper Tetra-(<i>tert</i> -Butyl)-Phthalocyanine into Ultrathin Films. Journal of Physical Chemistry C, 2016, 120, 12706-12712.	3.1	12
45	Physarum in Hybrid Electronic Devices. Emergence, Complexity and Computation, 2016, , 91-107.	0.3	2
46	On chirality of slime mould. BioSystems, 2016, 140, 23-27.	2.0	11
47	A bio-inspired memory device based on interfacing <i>Physarum polycephalum</i> with an organic semiconductor. APL Materials, 2015, 3, .	5.1	36
48	Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution. Interdisciplinary Sciences, Computational Life Sciences, 2015, 7, 373-381.	3 . 6	4
49	Organic memristive devices based circuits for bio-inspired memorizing and processing of the information. , 2015, , .		1
50	Basic Transitions of Physarum Polycephalum. , 2015, , .		1
51	Conductivity patterning with Physarum polycephalum: natural growth and deflecting. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 197-201.	0.8	7
52	Bio-organic memristive device: polyaniline-Physarum polycephalum interface. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 218-221.	0.8	5
53	Fabrication and Characterization of Chitosan and Pectin Nanostructured Multilayers. Macromolecular Chemistry and Physics, 2015, 216, 1067-1075.	2.2	14
54	Analysis of PANI biocompatibility with neuronal cells. , 2015, , .		О

#	Article	IF	CITATIONS
55	Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning. AIP Advances, 2015, 5, 027129.	1.3	14
56	Hardware elementary perceptron based on polyaniline memristive devices. Organic Electronics, 2015, 25, 16-20.	2.6	79
57	On the method of the fabrication of active channels of organic memristive devices: Langmuir-Blodgett vs layer-by-layer. , 2015, , .		0
58	Enzyme-induced pore formation in smart polymeric micro-containers for drug design and programming of biochemical computers. , 2015 , , .		0
59	Spectral imaging method for studying Physarum polycephalum growth on polyaniline surface. Materials Science and Engineering C, 2015, 53, 11-14.	7.3	12
60	A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chemical Science, 2015, 6, 2859-2868.	7.4	61
61	Hybrid slime mould-based system for unconventional computing. International Journal of General Systems, 2015, 44, 341-353.	2.5	12
62	Nanoengineered polymeric capsules for bio-computing. AIP Conference Proceedings, 2015, , .	0.4	2
63	Polymeric systems for bio-inspired information processing. AIP Conference Proceedings, 2015, , .	0.4	2
64	Hybrid slime mold - containing systems for unconventional computing. AIP Conference Proceedings, $2015, \ldots$	0.4	0
65	Organic memristive device as key element for neuromorphic networks. AIP Conference Proceedings, 2015, , .	0.4	0
66	Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique. Electronic Materials Letters, 2015, 11, 801-805.	2.2	13
67	Logic with memory: and gates made of organic and inorganic memristive devices. Semiconductor Science and Technology, 2014, 29, 104009.	2.0	25
68	The short-term memory (d.c. response) of the memristor demonstrates the causes of the memristor frequency effect., 2014,,.		4
69	On the Loading of Slime Mold Physarum polycephalum with Microparticles for Unconventional Computing Application. BioNanoScience, 2014, 4, 92-96.	3.5	12
70	Electrochemical model of the polyaniline based organic memristive device. Journal of Applied Physics, 2014, 116, 064507.	2.5	28
71	Hysteresis loop and cross-talk of organic memristive devices. Microelectronics Journal, 2014, 45, 1396-1400.	2.0	12
72	Magnetic nanoparticles-loaded Physarum polycephalum: Directed growth and particles distribution. Interdisciplinary Sciences, Computational Life Sciences, 2014, , .	3.6	1

#	Article	IF	Citations
73	Organic Memristive Devices and Neuromorphic Circuits. , 2014, , 389-411.		1
74	Extraction of Mycotoxins from Aqueous Solutions Using Functionalized Polyelectrolyte-Coated Microparticles. BioNanoScience, 2013, 3, 79-84.	3.5	4
75	A SPICE MODEL OF THE PEO-PANI MEMRISTOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350112.	1.7	7
76	Investigation of electrical properties of organic memristors based on thin polyaniline-graphene films. Russian Microelectronics, 2013, 42, 27-32.	0.5	12
77	Release kinetics of gold nanoparticles from collagen microcapsules by total reflection X-ray fluorescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 417, 83-88.	4.7	17
78	Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 075007.	2.0	7
79	Organic memristive devices: Architecture, properties and applications in neuromorphic networks. , 2013, , .		6
80	Smart Nanoengineered Polymeric Capsules as Ideal Pharmaceutical Carriers. Current Organic Chemistry, 2013, 17, 58-64.	1.6	32
81	Chains of organic memristive devices: Cross-talk of elements. , 2012, , .		5
82	ORGANIC MEMRISTOR DEVICES FOR LOGIC ELEMENTS WITH MEMORY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250283.	1.7	43
83	Stochastic hybrid 3D matrix: learning and adaptation of electrical properties. Journal of Materials Chemistry, 2012, 22, 22881.	6.7	54
84	Nanosized Optoelectronic Devices Based on Photoactivated Proteins. Biomacromolecules, 2012, 13, 3503-3509.	5.4	16
85	Langmuir–Schaefer films of a polyaniline–gold nanoparticle composite material for applications in organic memristive devices. RSC Advances, 2011, 1, 1537.	3.6	23
86	Adaptive polymeric system for Hebbian-type learning. Philosophical Magazine, 2011, 91, 2021-2027.	1.6	4
87	Gold nanoparticles–polyaniline composite material: Synthesis, structure and electrical properties. Synthetic Metals, 2011, 161, 1408-1413.	3.9	35
88	Thin Film Electrochemical Memristive Systems for Bio-Inspired Computation. Journal of Computational and Theoretical Nanoscience, 2011, 8, 313-330.	0.4	56
89	Organic Memristor Based on the Composite Materials: Conducting and Ionic Polymers, Gold Nanoparticles and Graphenes. Procedia Computer Science, 2011, 7, 248-249.	2.0	5
90	Adaptive Properties of Stochastic Memristor Networks: A Computational Study. Procedia Computer Science, 2011, 7, 312-313.	2.0	2

#	Article	IF	Citations
91	Electrical properties of an organic memristive system. Applied Physics A: Materials Science and Processing, 2011, 104, 1039-1046.	2.3	30
92	Multi-panel drugs detection in human serum for personalized therapy. Biosensors and Bioelectronics, 2011, 26, 3914-3919.	10.1	86
93	Material Memristive Device Circuits with Synaptic Plasticity: Learning and Memory. BioNanoScience, 2011, 1, 24-30.	3.5	93
94	Collagen containing microcapsules: Smart containers for disease controlled therapy. Journal of Colloid and Interface Science, 2011, 357, 56-62.	9.4	42
95	Purification of substances contaminated with mycotoxins using functionalyzed microparticles. , 2011, , .		0
96	The influence of molecular structure and Ï∈-system extent on nano- and microstructure of Langmuir layers of copper azaporphyrins. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1044-1051.	0.8	17
97	Role of the solid electrolyte composition on the performance of a polymeric memristor. Materials Science and Engineering C, 2010, 30, 407-411.	7.3	22
98	Bio-inspired adaptive networks based on organic memristors. Nano Communication Networks, 2010, 1, 108-117.	2.9	48
99	Nanoaggregates in floating layers of azaporphyrins. Journal of Porphyrins and Phthalocyanines, 2010, 14, 513-522.	0.8	17
100	Effect of temperature on the electrical properties of an organic memristive device. Journal of Applied Physics, 2010, 108, .	2.5	14
101	Organic memristors : Basic principles. , 2010, , .		9
102	Organic memristive device and its application for the information processing. , 2010, , .		0
103	Organic Memristors and Adaptive Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 210-221.	0.3	3
104	Electrochemical Control of the Conductivity in an Organic Memristor: A Time-Resolved X-ray Fluorescence Study of Ionic Drift as a Function of the Applied Voltage. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2115-2118.	8.0	92
105	Light-Driven Release from Polymeric Microcapsules Functionalized with Bacteriorhodopsin. Journal of the American Chemical Society, 2009, 131, 9800-9804.	13.7	49
106	Optimization of an organic memristor as an adaptive memory element. Journal of Applied Physics, 2009, 105, .	2.5	121
107	A functional polymeric material based on hybrid electrochemically controlled junctions. Materials Science and Engineering C, 2008, 28, 18-22.	7.3	39
108	The structure of DNA-containing complexes suggests the idea for a new adaptive sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 158-162.	4.7	11

#	Article	IF	Citations
109	On the stability of polymeric electrochemical elements for adaptive networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 218-221.	4.7	22
110	Origin of current oscillations in a polymeric electrochemically controlled element. Journal of Applied Physics, 2008, 103, 094517.	2.5	26
111	Polymeric electrochemical element for adaptive networks: Pulse mode. Journal of Applied Physics, 2008, 104, .	2.5	50
112	X-Ray Reflectivity Measurements of Layer-by-Layer Films at the Solid/Liquid Interface. Langmuir, 2008, 24, 12093-12096.	3.5	22
113	Polymer-based adaptive networks. , 2008, , 287-353.		3
114	Non-equilibrium electrical behaviour of polymeric electrochemical junctions. Journal of Physics Condensed Matter, 2007, 19, 205111.	1.8	30
115	Structural Study of the DNA Dipalmitoylphosphatidylcholine Complex at the Airâ°Water Interface. Biomacromolecules, 2007, 8, 2270-2275.	5.4	33
116	Interaction of DNA Oligomers with Cationic Lipidic Monolayers:Â Complexation and Splitting. Langmuir, 2007, 23, 4414-4420.	3.5	31
117	Spectroscopic investigation of an electrochemically controlled conducting polymer-solid electrolyte junction. Journal of Applied Physics, 2007, 101, 024501.	2.5	61
118	Polymeric elements for adaptive networks. Crystallography Reports, 2007, 52, 159-166.	0.6	55
119	Conducting polymer—solid electrolyte fibrillar composite material for adaptive networks. Soft Matter, 2006, 2, 870-874.	2.7	28
120	Functionalization and photoelectrochemical characterization of poly[3-3′(vinylcarbazole)] multi-walled carbon nanotube (PVK-MWNT) Langmuir–Schaefer films. Nanotechnology, 2006, 17, 699-705.	2.6	31
121	X-ray study of structural reorganization in phthalocyanine containing Langmuir–Blodgett heterostructures. Applied Surface Science, 2005, 245, 369-375.	6.1	4
122	A Heterostructure Composed of Conjugated Polymer and Copper Sulfide Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 15798-15802.	2.6	11
123	Hybrid electronic device based on polyaniline-polyethyleneoxide junction. Journal of Applied Physics, 2005, 97, 064501.	2.5	132
124	High-Sensitive Ultrathin Negative Electron Beam Resist Based on Langmuir-Blodgett Films of Polycyanoacrylate. Japanese Journal of Applied Physics, 2004, 43, 3984-3985.	1.5	1
125	Patterned arrays of magnetic nano-engineered capsules on solid supports. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1353-1354.	2.3	11
126	Morphology and conductivity in poly(ortho-anisidine)/carbon nanotubes nanocomposite films. Thin Solid Films, 2004, 468, 17-22.	1.8	18

#	Article	IF	Citations
127	Poly(2,5-dimethylaniline)–MWNTs nanocomposite: a new material for conductometric acid vapours sensor. Sensors and Actuators B: Chemical, 2004, 98, 247-253.	7.8	55
128	Simple method of hydrophilic/hydrophobic patterning of solid surfaces and its application to self-assembling of nanoengineered polymeric capsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245, 163-168.	4.7	13
129	Electron Beam Irradiation for Structuring of Molecular Assemblies. IEEE Transactions on Nanobioscience, 2004, 3, 6-15.	3.3	7
130	Complex catalytic colloids on the basis of firefly luciferase as optical nanosensor platform. Biotechnology and Bioengineering, 2003, 84, 286-291.	3.3	18
131	Small-angle X-ray scattering and neutron reflectivity studies of Langmuir–Blodgett films of copper tetra-tert-butyl-azaporphyrines. Journal of Applied Crystallography, 2003, 36, 758-762.	4.5	16
132	Microstructure Origin of the Conductivity Differences in Aggregated CuS Films of Different Thickness. Langmuir, 2003, 19, 766-771.	3.5	86
133	Deposition and Patterning of Polymeric Capsule Layers. Macromolecules, 2003, 36, 6493-6496.	4.8	13
134	Hybrid organic-inorganic electrolytic capacitors. IEEE Transactions on Nanobioscience, 2002, 1, 141-145.	3.3	1
135	In-Plane Patterning of Aggregated Nanoparticle Layers. Langmuir, 2002, 18, 3185-3190.	3.5	13
136	Electrical properties of thin copper sulfide films produced by the aggregation of nanoparticles formed in LB precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 645-650.	4.7	13
137	Influence of molecular and supramolecular factors on sensor properties of Langmuir–Blodgett films of tert-butyl-substituted copper azaporphyrines towards hydrocarbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 891-896.	4.7	17
138	High-value organic capacitor. Materials Science and Engineering C, 2002, 22, 381-385.	7.3	7
139	Langmuir-Blodgett films of biological molecules. , 2002, , 523-557.		0
140	P450scc Engineering and Nanostructuring for Cholesterol Sensing. Langmuir, 2001, 17, 3719-3726.	3.5	32
141	A physical insight into the gas-sensing properties of copper (II) tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin Langmuir–Blodgett films. Thin Solid Films, 2000, 379, 279-286.	1.8	45
142	Detection of hydrogen sulfide: the role of fatty acid salt Langmuir–Blodgett films. Materials Science and Engineering C, 2000, 11, 121-128.	7.3	11
143	STM Image Formation of Organic Thin Films:  The Role of Water Shell. Langmuir, 2000, 16, 6577-6582.	3.5	5
144	Toward bacteriorhodopsin based photocells. Biosensors and Bioelectronics, 1999, 14, 427-433.	10.1	15

#	Article	IF	CITATIONS
145	Towards a light-addressable transducer bacteriorhodopsin based. Nanotechnology, 1998, 9, 223-227.	2.6	17
146	Preparation of semiconductor superlattices from LB precursor. Thin Solid Films, 1998, 327-329, 503-505.	1.8	12
147	Synchrotron study of heat induced order in protein Langmuir–Blodgett films. Thin Solid Films, 1998, 327-329, 636-638.	1.8	6
148	Surface Pressure Induced Structural Effects in Photosynthetic Reaction Center Langmuir-Blodgett Films. Langmuir, 1998, 14, 193-198.	3.5	12
149	Semiconductor nanoparticles for quantum devices. Nanotechnology, 1998, 9, 158-161.	2.6	26
150	Single Electron and Quantum Phenomena in Ultra Small Particles. , 1998, , 117-138.		0
151	Fatty acid-based monoelectron device. Biosensors and Bioelectronics, 1997, 12, 601-606.	10.1	9
152	Formation and characterization of an ultrathin semiconductor polycrystal layer for transducer applications. Biosensors and Bioelectronics, 1997, 12, 607-611.	10.1	5
153	Quartz balance DNA sensor. Biosensors and Bioelectronics, 1997, 12, 613-618.	10.1	51
154	Qualitative and quantitative analysis of the secondary structure of cytochrome C Langmuir-Blodgett films., 1997, 42, 227-237.		15
155	Room-temperature single-electron junction Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10556-10559.	7.1	50
156	On the role of molecular close packing on the protein thermal stability. Thin Solid Films, 1996, 284-285, 805-808.	1.8	12
157	Monoelectron phenomena in nanometer scale particles formed in LB films. Thin Solid Films, 1996, 284-285, 891-893.	1.8	21
158	Bacteriorhodopsin thin film as a sensitive layer for an anaesthetic sensor. Thin Solid Films, 1996, 284-285, 898-900.	1.8	13
159	Kinetics study of glutathione S-transferase Langmuir-Blodgett films. Thin Solid Films, 1996, 284-285, 854-858.	1.8	12
160	On the Role of Nanoparticle Sizes in Monoelectron Conductivity. , 1996, , 497-503.		4
161	Two-dimensional order and protein thermal stability: high temperature preservation of structure and function. Biosensors and Bioelectronics, 1995, 10, 25-34.	10.1	42
162	On the degradation of conducting Langmuir-Blodgett films. Journal of Materials Science: Materials in Electronics, 1995, 6, 79.	2.2	4

#	Article	IF	Citations
163	High-sensitivity biosensor based on LB technology and on nanogravimetry. Sensors and Actuators B: Chemical, 1995, 24, 121-128.	7.8	24
164	On the mobility of Immunoglobulines G in Langmuir-Blodgett films. Thin Solid Films, 1995, 269, 85-89.	1.8	4
165	Observation of room temperature mono-electron phenomena on nanometre-sized CdS particles. Journal Physics D: Applied Physics, 1995, 28, 2534-2538.	2.8	27
166	Formation of Ultrathin Semiconductor Films by CdS Nanostructure Aggregation. The Journal of Physical Chemistry, 1994, 98, 13323-13327.	2.9	71
167	Scanning tunnelling microscopy of a monolayer of reaction centres. Thin Solid Films, 1994, 243, 403-406.	1.8	50
168	Chemically induced anisotropy in antibody Langmuir-Blodgett films. Thin Solid Films, 1994, 237, 19-21.	1.8	16
169	Reversed micellar approach as a new tool for the formation and structural studies of protein Langmuir-Blodgett films. Thin Solid Films, 1994, 238, 88-94.	1.8	16
170	Langmuir-Blodgett films of immunoglobulines IgG. Ellipsometric study of the deposition process and of immunological activity. Thin Solid Films, 1994, 238, 127-132.	1.8	48
171	Langmuir-Blodgett Films Built-Up with Two Component Monolayers. Molecular Crystals and Liquid Crystals, 1994, 243, 125-134.	0.3	0
172	Nanogravimetric gauge for surface density measurements and deposition analysis of langmuir-blodgett films. Thin Solid Films, 1993, 230, 86-89.	1.8	62
173	Thermal stability of protein secondary structure in Langmuir-Blodgett films. Biochimica Et Biophysica Acta - General Subjects, 1993, 1158, 273-278.	2.4	82
174	On the Structure of Mixed Langmuirâ€Blodgett Films of Two Different Fatty Acid Salts. Molecular Crystals and Liquid Crystals, 1992, 215, 205-211.	0.3	2
175	Investigation of the Temperature Phase Transition in Langmuirâ€Blodgett Films of Discotics. Molecular Crystals and Liquid Crystals, 1992, 215, 363-368.	0.3	1
176	Structural Study of the Cyto-chrome-containing Reaction Centre Complex of the Bacteria <i>Chromatium minutissimum</i> i>in Solution and Langmuir-Blodgett Films. Molecular Crystals and Liquid Crystals, 1992, 221, 1-6.	0.3	7
177	Immobilization of DNA Fragments by Langmuir-Blodgett Technique. Molecular Crystals and Liquid Crystals, 1992, 215, 213-220.	0.3	12
178	Oriented purple membrane multilayers of halobacteria fabricated by langmuir-blodgett and electrophoretic sedimentation techniques. Advanced Materials for Optics and Electronics, 1992, 1, 105-115.	0.4	5
179	On the structure of mixed Langmuir-Blodgett films. Thin Solid Films, 1992, 210-211, 637-639.	1.8	7
180	Formation and xâ€ray and electron diffraction study of Cds and Pbs particles inside fatty acid matrix. Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 359-363.	0.6	27

#	ARTICLE	IF	CITATIONS
181	Langmuir-blodgett films of immunoglobulins as sensing elements. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1990, 12, 1253-1258.	0.4	18
182	High-sensitive ultrathin electron beam resist based on Langmuir-Blodgett films of polycyanoacrylate. , $0, , .$		0
183	Bioelectronics brain using memristive polymer statistical systems. , 0, , 256-265.		3
184	Pulse Programming of Resistive States of BTBTâ€Based Organic Memristive Device with High Endurance. Physica Status Solidi - Rapid Research Letters, 0, , 2100471.	2.4	2