
Jagannath Kuchlyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of the Photophysical Properties of Curcumin in Nonionic Surfactant (Tween-20) Forming Micelles and Niosomes: A Comparative Study of Different Microenvironments. Journal of Physical Chemistry B, 2013, 117, 6957-6968.	2.6	114
2	Spontaneous Transition of Micelle–Vesicle–Micelle in a Mixture of Cationic Surfactant and Anionic Surfactant-like Ionic Liquid: A Pure Nonlipid Small Unilamellar Vesicular Template Used for Solvent and Rotational Relaxation Study. Langmuir, 2013, 29, 10066-10076.	3.5	90
3	Spectroscopy and Fluorescence Lifetime Imaging Microscopy To Probe the Interaction of Bovine Serum Albumin with Graphene Oxide. Langmuir, 2015, 31, 13793-13801.	3.5	63
4	Ionic liquids in microemulsions: Formulation and characterization. Current Opinion in Colloid and Interface Science, 2016, 25, 27-38.	7.4	58
5	Vesicles Formed in Aqueous Mixtures of Cholesterol and Imidazolium Surface Active Ionic Liquid: A Comparison with Common Cationic Surfactant by Water Dynamics. Journal of Physical Chemistry B, 2014, 118, 5913-5923.	2.6	54
6	An Investigation into the Effect of the Structure of Bile Salt Aggregates on the Binding Interactions and ESIHT Dynamics of Curcumin: A Photophysical Approach To Probe Bile Salt Aggregates as a Potential Drug Carrier. Journal of Physical Chemistry B, 2013, 117, 13795-13807.	2.6	53
7	A Step toward the Development of High-Temperature Stable Ionic Liquid-in-Oil Microemulsions Containing Double-Chain Anionic Surface Active Ionic Liquid. Journal of Physical Chemistry B, 2013, 117, 7472-7480.	2.6	51
8	Curcumin in Reverse Micelle: An Example to Control Excited-State Intramolecular Proton Transfer (ESIPT) in Confined Media. Journal of Physical Chemistry B, 2013, 117, 6906-6916.	2.6	48
9	How Does the Surface Charge of Ionic Surfactant and Cholesterol Forming Vesicles Control Rotational and Translational Motion of Rhodamine 6G Perchlorate (R6G ClO ₄)?. Langmuir, 2015, 31, 2310-2320.	3.5	44
10	Effect of Encapsulation of Curcumin in Polymeric Nanoparticles: How Efficient to Control ESIPT Process?. Langmuir, 2014, 30, 10834-10844.	3.5	43
11	Unique Characteristics of Ionic Liquids Comprised of Long-Chain Cations and Anions: A New Physical Insight. Journal of Physical Chemistry B, 2013, 117, 3927-3934.	2.6	40
12	Organic Additive, 5-Methylsalicylic Acid Induces Spontaneous Structural Transformation of Aqueous Pluronic Triblock Copolymer Solution: A Spectroscopic Investigation of Interaction of Curcumin with Pluronic Micellar and Vesicular Aggregates. Journal of Physical Chemistry B, 2014, 118, 11437-11448.	2.6	40
13	Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures. Journal of Chemical Physics, 2015, 142, 054505.	3.0	34
14	Exploring the Photophysics of Curcumin in Zwitterionic Micellar System: An Approach to Control ESIPT Process in the Presence of Room Temperature Ionic Liquids (RTILs) and Anionic Surfactant. Journal of Physical Chemistry B, 2014, 118, 3669-3681.	2.6	33
15	A Novel Ionic Liquid-in-Oil Microemulsion Composed of Biologically Acceptable Components: An Excitation Wavelength Dependent Fluorescence Resonance Energy Transfer Study. Journal of Physical Chemistry B, 2013, 117, 3221-3231.	2.6	32
16	Unique Photophysical Behavior of 2,2′-Bipyridine-3,3′-diol in DMSO–Water Binary Mixtures: Potential Application for Fluorescence Sensing of Zn ²⁺ Based on the Inhibition of Excited-State Intramolecular Double Proton Transfer. Journal of Physical Chemistry B, 2013, 117, 12212-12223.	2.6	32
17	How does bile salt penetration affect the self-assembled architecture of pluronic P123 micelles? – light scattering and spectroscopic investigations. Physical Chemistry Chemical Physics, 2015, 17, 19977-19990.	2.8	31
18	Stimuli-Sensitive Breathing of Cucurbit[7]uril Cavity: Monitoring through the Environment Responsive Fluorescence of 1′-Hydroxy-2′-acetonaphthone (HAN). Journal of Physical Chemistry B, 2015, 119, 2310-2322.	2.6	30

Jagannath Kuchlyan

#	Article	IF	CITATIONS
19	Cholesterol Based Surface Active Ionic Liquid That Can Form Microemulsions and Spontaneous Vesicles. Langmuir, 2017, 33, 5891-5899.	3.5	29
20	Fluorescence Resonance Energy Transfer in Microemulsions Composed of Tripled-Chain Surface Active Ionic Liquids, RTILs, and Biological Solvent: An Excitation Wavelength Dependence Study. Journal of Physical Chemistry B, 2013, 117, 9508-9517.	2.6	28
21	What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe?. Journal of the American Chemical Society, 2020, 142, 16999-17014.	13.7	27
22	Ultrafast FRET to Study Spontaneous Micelleâ€ŧoâ€Vesicle Transitions in an Aqueous Mixed Surfaceâ€Active Ionic‣iquid System. ChemPhysChem, 2014, 15, 3544-3553.	2.1	26
23	Graphene Oxide and Pluronic Copolymer Aggregates–Possible Route to Modulate the Adsorption of Fluorophores and Imaging of Live Cells. Journal of Physical Chemistry C, 2015, 119, 25023-25035.	3.1	25
24	Spectroscopic investigation of the binding interactions of a membrane potential molecule in various supramolecular confined environments: contrasting behavior of surfactant molecules in relocation or release of the probe between nanocarriers and DNA surface. Physical Chemistry Chemical Physics, 2014, 16, 25024-25038.	2.8	24
25	Roles of Viscosity, Polarity, and Hydrogen-Bonding Ability of a Pyrrolidinium Ionic Liquid and Its Binary Mixtures in the Photophysics and Rotational Dynamics of the Potent Excited-State Intramolecular Proton-Transfer Probe 2,2′-Bipyridine-3,3′-diol. Journal of Physical Chemistry B, 2013, 117, 6789-6800.	2.6	23
26	Unique Influence of Cholesterol on Modifying the Aggregation Behavior of Surfactant Assemblies: Investigation of Photophysical and Dynamical Properties of 2,2â€ ² -Bipyridine-3,3â€ ² -diol, BP(OH) ₂ in Surfactant Micelles, and Surfactant/Cholesterol Forming Vesicles. Journal of Physical Chemistry B, 2014, 118, 9329-9340.	2.6	20
27	Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates. Physical Chemistry Chemical Physics, 2015, 17, 25216-25227.	2.8	18
28	Interaction of gold nanoclusters with IR light emitting cyanine dyes: a systematic fluorescence quenching study. Physical Chemistry Chemical Physics, 2014, 16, 17272.	2.8	16
29	A new rhodamine derived fluorescent sensor: Detection of Hg 2+ at cellular level. Chemical Physics Letters, 2017, 673, 84-88.	2.6	16
30	Excited-State Proton Transfer Dynamics of Firefly's Chromophore <scp>D</scp> -Luciferin in DMSO–Water Binary Mixture. Journal of Physical Chemistry B, 2014, 118, 13946-13953.	2.6	14
31	Deciphering the pH-dependence of ground- and excited-state equilibria of thienoguanine. Physical Chemistry Chemical Physics, 2020, 22, 7381-7391.	2.8	13
32	Effect of Confinement on Excited-State Proton Transfer of Firefly's Chromophore <scp>d</scp> -Luciferin in AOT Reverse Micelles. Journal of Physical Chemistry B, 2014, 118, 3401-3408.	2.6	12
33	ls it possible to apply dynamics of solvent to locate metal nanoparticles inside an ionic liquids-containing microheterogeneous system? A comparative study. Chemical Physics Letters, 2013, 580, 88-93.	2.6	10
34	Effect of the submicellar concentration of bile salts on structural alterations of Î ² -casein micelles. RSC Advances, 2016, 6, 71989-71998.	3.6	9
35	Vesicles Formation by Zwitterionic Micelle and Poly- <scp>l</scp> -lysine: Solvation and Rotational Relaxation Study. Journal of Physical Chemistry B, 2015, 119, 8285-8292.	2.6	6
36	Effect of room temperature surface active ionic liquids on aggregated nanostructures of Î ³ -Cyclodextrins: A picosecond fluorescence spectroscopic study. Chemical Physics Letters, 2014, 601, 174-180.	2.6	5

#	Article	IF	CITATIONS
37	Light-induced modulation of DNA recognition by the Rad4/XPC damage sensor protein. RSC Chemical Biology, 2021, 2, 523-536.	4.1	3
38	Effect of viscosity on photoinduced electron transfer reaction: An observation of the Marcus inverted region in homogeneous solvents. Chemical Physics Letters, 2016, 660, 81-86.	2.6	2
39	Interaction of fluorescence dyes with 5-fluorouracil: A photoinduced electron transfer study in bulk and biologically relevant water. Chemical Physics Letters, 2014, 613, 115-121.	2.6	0