Kannan Natarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408520/publications.pdf

Version: 2024-02-01

361413 477307 1,702 29 20 29 citations h-index g-index papers 32 32 32 1843 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure and Function of Natural Killer Cell Receptors: Multiple Molecular Solutions to Self, Nonself Discrimination. Annual Review of Immunology, 2002, 20, 853-885.	21.8	305
2	Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature, 1999, 402, 623-631.	27.8	247
3	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. European Journal of Immunology, 1999, 29, 669-677.	2.9	126
4	Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science, 2017, 358, 1064-1068.	12.6	111
5	A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity. European Journal of Immunology, 2001, 31, 2094-2103.	2.9	86
6	Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nature Chemical Biology, 2018, 14, 811-820.	8.0	74
7	Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1006-15.	7.1	73
8	Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. Journal of Molecular Biology, 1998, 283, 179-191.	4.2	71
9	Binding of the Natural Killer Cell Inhibitory Receptor Ly49A to Its Major Histocompatibility Complex Class I Ligand. Journal of Biological Chemistry, 2002, 277, 1433-1442.	3.4	65
10	Structural basis of MHC class I recognition by natural killer cell receptors. Immunological Reviews, 2001, 181, 52-65.	6.0	64
11	An allosteric site in the T-cell receptor $\hat{Cl^2}$ domain plays a critical signalling role. Nature Communications, 2017, 8, 15260.	12.8	64
12	The Role of Molecular Flexibility in Antigen Presentation and T Cell Receptor-Mediated Signaling. Frontiers in Immunology, 2018, 9, 1657.	4.8	51
13	Interaction of the NK Cell Inhibitory Receptor Ly49A with H-2Dd. Immunity, 1999, 11, 591-601.	14.3	50
14	A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity. Journal of Clinical Investigation, 2018, 128, 2819-2832.	8.2	47
15	The cellular environment regulates in situ kinetics of Tâ€cell receptor interaction with peptide major histocompatibility complex. European Journal of Immunology, 2015, 45, 2099-2110.	2.9	37
16	Crystal Structure of the Murine Cytomegalovirus MHC-I Homolog m144. Journal of Molecular Biology, 2006, 358, 157-171.	4.2	36
17	Structures of synthetic nanobody–SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. Journal of Biological Chemistry, 2021, 297, 101202.	3.4	28
18	MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins—Key Elements of Adaptive and Innate Immunity. Advances in Experimental Medicine and Biology, 2019, 1172, 21-62.	1.6	28

#	Article	IF	CITATIONS
19	MHC class I recognition by Ly49 natural killer cell receptors. Molecular Immunology, 2002, 38, 1023-1027.	2.2	25
20	The Structure of Mouse Cytomegalovirus m04 Protein Obtained from Sparse NMR Data Reveals a Conserved Fold of the m02-m06 Viral Immune Modulator Family. Structure, 2014, 22, 1263-1273.	3.3	23
21	Structural and dynamic studies of TAPBPR and Tapasin reveal the mechanism of peptide loading of MHC-I molecules. Current Opinion in Immunology, 2020, 64, 71-79.	5.5	19
22	Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides. Frontiers in Immunology, 2020, 11, 629399.	4.8	16
23	Chaperones and Catalysts: How Antigen Presentation Pathways Cope With Biological Necessity. Frontiers in Immunology, 2022, 13, 859782.	4.8	14
24	Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 164-173.	5.2	8
25	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. European Journal of Immunology, 1999, 29, 669-677.	2.9	5
26	Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. Journal of Immunology, 2020, 205, 567-572.	0.8	3
27	Structure and Function of Molecular Chaperones that Govern Immune Peptide Loading. Sub-Cellular Biochemistry, 2019, 93, 321-337.	2.4	3
28	Cutting antigenic peptides down to size. Journal of Biological Chemistry, 2019, 294, 18545-18546.	3.4	2
29	Mitochondria play a central role in NLRP3 inflammasome activation (349.1). FASEB Journal, 2014, 28, 349.1.	0.5	1