Sarah A Teichmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408220/publications.pdf

Version: 2024-02-01

239 papers 53,032 citations

102 h-index 206 g-index

299 all docs

299 docs citations

times ranked

299

64078 citing authors

#	Article	IF	CITATIONS
1	Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nature Biotechnology, 2022, 40, 245-253.	9.4	229
2	An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology, 2022, 162, 859-876.	0.6	37
3	Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Research, 2022, 50, D129-D140.	6.5	78
4	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	13.7	756
5	Single-cell atlases: shared and tissue-specific cell types across human organs. Nature Reviews Genetics, 2022, 23, 395-410.	7.7	71
6	Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nature Communications, 2022, 13, 1158.	5.8	29
7	Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nature Medicine, 2022, 28, 743-751.	15.2	35
8	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
9	Mapping the developing human immune system across organs. Science, 2022, 376, eabo0510.	6.0	126
10	Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 2022, 376, eabl5197.	6.0	265
11	Community voices: policy proposals to promote inclusion in academia through the lens of women in science. Nature Communications, $2022, 13, \ldots$	5.8	3
12	Integrated single cell and spatial transcriptomics reveal autoreactive differentiated B cells in joints of early rheumatoid arthritis. Scientific Reports, 2022, 12, .	1.6	18
13	Developmental cell programs are co-opted in inflammatory skin disease. Science, 2021, 371, .	6.0	264
14	Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science, 2021, 371, 839-846.	6.0	170
15	Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Science Advances, 2021, 7, .	4.7	78
16	Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Science Immunology, 2021, 6, .	5.6	149
17	INSIGHT: A population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Science Advances, 2021, 7, .	4.7	54
18	User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nature Methods, 2021, 18, 327-328.	9.0	26

#	Article	IF	CITATIONS
19	Transcriptional characterization of human megakaryocyte polyploidization and lineage commitment. Journal of Thrombosis and Haemostasis, 2021, 19, 1236-1249.	1.9	15
20	SARS-CoV-2 infection of the oral cavity and saliva. Nature Medicine, 2021, 27, 892-903.	15.2	527
21	The Human Lung Cell Atlas: a transformational resource for cells of the respiratory system. , 2021, , 158-174.		3
22	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	15.2	452
23	CLICK-enabled analogues reveal pregnenolone interactomes in cancer and immune cells. IScience, 2021, 24, 102485.	1.9	6
24	Developmental bifurcation of human T follicular regulatory cells. Science Immunology, 2021, 6, .	5.6	22
25	High-throughput full-length single-cell RNA-seq automation. Nature Protocols, 2021, 16, 2886-2915.	5.5	13
26	Mapping Rora expression in resting and activated CD4+ T cells. PLoS ONE, 2021, 16, e0251233.	1.1	29
27	Single cell derived mRNA signals across human kidney tumors. Nature Communications, 2021, 12, 3896.	5.8	27
28	Towards a Human Cell Atlas: Taking Notes from the Past. Trends in Genetics, 2021, 37, 625-630.	2.9	59
29	Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation, 2021, 144, 286-302.	1.6	181
30	Molecular phenotyping reveals the identity of Barrett's esophagus and its malignant transition. Science, 2021, 373, 760-767.	6.0	99
31	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	1.8	13
32	Cells of the human intestinal tract mapped across space and time. Nature, 2021, 597, 250-255.	13.7	266
33	Blood and immune development in human fetal bone marrow and Down syndrome. Nature, 2021, 598, 327-331.	13.7	73
34	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	13.7	114
35	The Organoid Cell Atlas. Nature Biotechnology, 2021, 39, 13-17.	9.4	96
36	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68

#	Article	IF	CITATIONS
37	Cell type ontologies of the Human Cell Atlas. Nature Cell Biology, 2021, 23, 1129-1135.	4.6	71
38	Cell-type specialization is encoded by specific chromatin topologies. Nature, 2021, 599, 684-691.	13.7	112
39	Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nature Genetics, 2021, 53, 1698-1711.	9.4	238
40	MultiMAP: dimensionality reduction and integration of multimodal data. Genome Biology, 2021, 22, 346.	3.8	27
41	Completing the cancer jigsaw puzzle with single-cell multiomics. Nature Cancer, 2021, 2, 1260-1262.	5.7	3
42	BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics, 2020, 36, 964-965.	1.8	517
43	Expression Atlas update: from tissues to single cells. Nucleic Acids Research, 2020, 48, D77-D83.	6.5	363
44	Computational methods for single-cell omics across modalities. Nature Methods, 2020, 17, 14-17.	9.0	156
45	Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology, 2020, 21, 1597-1610.	7.0	43
46	Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nature Communications, 2020, 11, 3588.	5.8	54
47	Cells of the adult human heart. Nature, 2020, 588, 466-472.	13.7	852
48	Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity, 2020, 53, 1296-1314.e9.	6.6	278
49	Guidelines for reporting single-cell RNA-seq experiments. Nature Biotechnology, 2020, 38, 1384-1386.	9.4	27
50	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	13.7	108
51	Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nature Communications, 2020, 11, 4767.	5.8	108
52	Mosquito cellular immunity at single-cell resolution. Science, 2020, 369, 1128-1132.	6.0	68
53	Single cell transcriptomics comes of age. Nature Communications, 2020, 11, 4307.	5.8	194
54	Gene signatures from scRNAâ€seq accurately quantify mast cells in biopsies in asthma. Clinical and Experimental Allergy, 2020, 50, 1428-1431.	1.4	16

#	Article	IF	CITATIONS
55	Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn's Disease. Developmental Cell, 2020, 55, 771-783.e5.	3.1	164
56	Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nature Communications, 2020, 11, 6372.	5.8	42
57	Putative cell type discovery from single-cell gene expression data. Nature Methods, 2020, 17, 621-628.	9.0	91
58	<i>Malat1</i> Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells. Journal of Immunology, 2020, 204, 2949-2960.	0.4	52
59	Prenatal development of human immunity. Science, 2020, 368, 600-603.	6.0	90
60	High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells. Cell, 2020, 181, 1291-1306.e19.	13.5	110
61	Cardelino: computational integration of somatic clonal substructure and single-cell transcriptomes. Nature Methods, 2020, 17, 414-421.	9.0	48
62	The network effect: studying COVID-19 pathology with the Human Cell Atlas. Nature Reviews Molecular Cell Biology, 2020, 21, 415-416.	16.1	12
63	Distinct microbial and immune niches of the human colon. Nature Immunology, 2020, 21, 343-353.	7.0	175
64	Immunology in the Era of Single-Cell Technologies. Annual Review of Immunology, 2020, 38, 727-757.	9.5	57
65	A cell atlas of human thymic development defines T cell repertoire formation. Science, 2020, 367, .	6.0	368
66	CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nature Protocols, 2020, 15, 1484-1506.	5.5	1,768
67	Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1655-1663.	1.5	56
68	SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181, 1016-1035.e19.	13.5	1,956
69	Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity, 2020, 52, 1088-1104.e6.	6.6	79
70	Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Reports, 2020, 31, 107628.	2.9	186
71	Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nature Communications, 2020, 11, 586.	5.8	69
72	Cell Atlas technologies and insights into tissue architecture. Biochemical Journal, 2020, 477, 1427-1442.	1.7	32

#	Article	IF	Citations
73	Single-cell transcriptomics of alloreactive CD4+ T cells over time reveals divergent fates during gut graft-versus-host disease. JCI Insight, 2020, 5, .	2.3	12
74	Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nature Communications, 2019, 10, 3350.	5.8	82
75	Immunology Driven by Large-Scale Single-Cell Sequencing. Trends in Immunology, 2019, 40, 1011-1021.	2.9	62
76	Decoding human fetal liver haematopoiesis. Nature, 2019, 574, 365-371.	13.7	392
77	Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis. Cell Reports, 2019, 29, 1832-1847.e8.	2.9	261
78	Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell, 2019, 176, 882-896.e18.	13.5	135
79	Spatiotemporal immune zonation of the human kidney. Science, 2019, 365, 1461-1466.	6.0	281
80	Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation. Immunity, 2019, 50, 493-504.e7.	6.6	352
81	A cellular census of human lungs identifies novel cell states in health and in asthma. Nature Medicine, 2019, 25, 1153-1163.	15.2	631
82	Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21, 687-699.	4.6	261
83	Polychromic Reporter Mice Reveal Unappreciated Innate Lymphoid Cell Progenitor Heterogeneity and Elusive ILC3 Progenitors in Bone Marrow. Immunity, 2019, 51, 104-118.e7.	6.6	94
84	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	1.4	178
85	Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biology, 2019, 20, 70.	3.8	82
86	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	3.1	57
87	A test metric for assessing single-cell RNA-seq batch correction. Nature Methods, 2019, 16, 43-49.	9.0	278
88	Exponential scaling of single-cell RNA-seq in the past decade. Nature Protocols, 2018, 13, 599-604.	5.5	704
89	Mapping human development at single-cell resolution. Development (Cambridge), 2018, 145, .	1.2	30
90	Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nature Structural and Molecular Biology, 2018, 25, 279-288.	3.6	43

#	Article	IF	Citations
91	SpatialDE: identification of spatially variable genes. Nature Methods, 2018, 15, 343-346.	9.0	382
92	Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nature Communications, 2018, 9, 4877.	5.8	174
93	Single-cell reconstruction of the early maternal–fetal interface in humans. Nature, 2018, 563, 347-353.	13.7	1,547
94	Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Medicine, 2018, 10, 76.	3.6	67
95	A rapid and robust method for single cell chromatin accessibility profiling. Nature Communications, 2018, 9, 5345.	5.8	188
96	Gene expression variability across cells and species shapes innate immunity. Nature, 2018, 563, 197-202.	13.7	165
97	From Tissues to Cell Types and Back: Single-Cell Gene Expression Analysis of Tissue Architecture. Annual Review of Biomedical Data Science, 2018, 1, 29-51.	2.8	91
98	BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nature Methods, 2018, 15, 563-565.	9.0	84
99	Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7568-E7577.	3.3	57
100	Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science, 2018, 361, 594-599.	6.0	511
101	Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions. Life Science Alliance, 2018, 1, e201800124.	1.3	32
102	Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome Research, 2017, 27, 451-461.	2.4	126
103	Power analysis of single-cell RNA-sequencing experiments. Nature Methods, 2017, 14, 381-387.	9.0	496
104	Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves T $_{\rm sub}H_{\rm sub}\ 1/T\ sub}FH_{\rm sub}\ fate\ bifurcation\ in\ malaria.\ Science\ Immunology,\ 2017,\ 2,\ .$	5.6	258
105	Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nature Cell Biology, 2017, 19, 603-613.	4.6	138
106	Computational approaches for interpreting sc <scp>RNA</scp> â€seq data. FEBS Letters, 2017, 591, 2213-2225.	1.3	112
107	Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science, 2017, 355, 1433-1436.	6.0	265
108	Intrinsic transcriptional heterogeneity in B cells controls early class switching to IgE. Journal of Experimental Medicine, 2017, 214, 183-196.	4.2	49

#	Article	IF	CITATIONS
109	Regulation, evolution and consequences of cotranslational protein complex assembly. Current Opinion in Structural Biology, 2017, 42, 90-97.	2.6	62
110	Single-cell transcriptomics to explore the immune system in health and disease. Science, 2017, 358, 58-63.	6.0	440
111	Establishment of mouse expanded potential stem cells. Nature, 2017, 550, 393-397.	13.7	223
112	Single-cell insights into transcriptomic diversity in immunity. Current Opinion in Systems Biology, 2017, 5, 63-71.	1.3	5
113	Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology, 2017, 153, 1320-1337.e16.	0.6	246
114	Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression. Nature Communications, 2017, 8, 36.	5.8	62
115	Single cell transcriptomics of pluripotent stem cells: reprogramming and differentiation. Current Opinion in Genetics and Development, 2017, 46, 66-76.	1.5	17
116	The Human Cell Atlas. ELife, 2017, 6, .	2.8	1,547
117	A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Medicine, 2017, 9, 75.	3.6	712
118	The Human Cell Atlas: from vision to reality. Nature, 2017, 550, 451-453.	13.7	511
119	Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Data in Brief, 2016, 8, 948-957.	0.5	2
120	Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature, 2016, 539, 102-106.	13.7	257
121	MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs. Cell Reports, 2016, 17, 179-192.	2.9	174
122	Genetics and immunity in the era of single-cell genomics. Human Molecular Genetics, 2016, 25, R141-R148.	1.4	19
123	Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biology, 2016, 17, 103.	3.8	65
124	Classification of low quality cells from single-cell RNA-seq data. Genome Biology, 2016, 17, 29.	3.8	572
125	AlloRep: A Repository of Sequence, Structural and Mutagenesis Data for the LacI/GalR Transcription Regulators. Journal of Molecular Biology, 2016, 428, 671-678.	2.0	18
126	Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells. Cell Reports, 2016, 14, 966-977.	2.9	164

#	Article	IF	Citations
127	T cell fate and clonality inference from single-cell transcriptomes. Nature Methods, 2016, 13, 329-332.	9.0	411
128	The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding. PLoS Genetics, 2015, 11, e1005251.	1.5	35
129	The Technology and Biology of Single-Cell RNA Sequencing. Molecular Cell, 2015, 58, 610-620.	4.5	1,014
130	Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biology, 2015, 16, 178.	3.8	86
131	Principles of assembly reveal a periodic table of protein complexes. Science, 2015, 350, aaa2245.	6.0	198
132	Computational and analytical challenges in single-cell transcriptomics. Nature Reviews Genetics, 2015, 16, 133-145.	7.7	1,043
133	Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology, 2015, 33, 155-160.	9.4	1,068
134	Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 2015, 85, 54-61.	1.9	381
135	An atlas of mouse CD4+ T cell transcriptomes. Biology Direct, 2015, 10, 14.	1.9	82
136	Structural and evolutionary versatility in protein complexes with uneven stoichiometry. Nature Communications, 2015, 6, 6394.	5.8	48
137	Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nature Communications, 2015, 6, 8687.	5.8	213
138	Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell, 2015, 17, 471-485.	5.2	505
139	Structure, Dynamics, Assembly, and Evolution of Protein Complexes. Annual Review of Biochemistry, 2015, 84, 551-575.	5.0	351
140	Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution. PLoS Biology, 2014, 12, e1001870.	2.6	89
141	Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science, 2014, 346, 1254346.	6.0	62
142	Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays, 2014, 36, 209-218.	1.2	68
143	Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis. Cell Reports, 2014, 7, 1130-1142.	2.9	198
144	Evolution of protein structures and interactions from the perspective of residue contact networks. Current Opinion in Structural Biology, 2013, 23, 954-963.	2.6	33

#	Article	IF	Citations
145	The Role of Salt Bridges, Charge Density, and Subunit Flexibility in Determining Disassembly Routes of Protein Complexes. Structure, 2013, 21, 1325-1337.	1.6	82
146	Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20212-20217.	3.3	1,482
147	Accounting for technical noise in single-cell RNA-seq experiments. Nature Methods, 2013, 10, 1093-1095.	9.0	929
148	Protein Complexes Are under Evolutionary Selection to Assemble via Ordered Pathways. Cell, 2013, 153, 461-470.	13.5	215
149	Regulation of protein–protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Molecular BioSystems, 2013, 9, 1620.	2.9	60
150	Structural, Evolutionary, and Assembly Principles of Protein Oligomerization. Progress in Molecular Biology and Translational Science, 2013, 117, 25-51.	0.9	107
151	Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. Journal of Experimental Medicine, 2013, 210, 1137-1151.	4.2	304
152	Immunology meets genomics. Briefings in Functional Genomics, 2013, 12, 469-470.	1.3	0
153	Evolution of oligomeric state through geometric coupling of protein interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8127-8132.	3.3	49
154	Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell Cycle, 2012, 11, 4487-4488.	1.3	6
155	Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20461-20466.	3.3	161
156	Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs. Cell Stem Cell, 2012, 10, 157-170.	5.2	261
157	DNA Sequence Preferences of Transcriptional Activators Correlate More Strongly than Repressors with Nucleosomes. Molecular Cell, 2012, 47, 183-192.	4.5	26
158	The emergence of protein complexes: quaternary structure, dynamics and allostery. Biochemical Society Transactions, 2012, 40, 475-491.	1.6	75
159	Probing the diverse landscape of protein flexibility and binding. Current Opinion in Structural Biology, 2012, 22, 643-650.	2.6	94
160	How Do You Find Transcription Factors? Computational Approaches to Compile and Annotate Repertoires of Regulators for Any Genome. Methods in Molecular Biology, 2012, 786, 3-19.	0.4	11
161	The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.	3.1	188
162	Duel of the fates: the role of transcriptional circuits and noise in CD4+ cells. Current Opinion in Cell Biology, 2012, 24, 350-358.	2.6	14

#	Article	IF	CITATIONS
163	Analysis and simulation of gene expression profiles in pure and mixed cell populations. Physical Biology, 2011, 8, 035013.	0.8	17
164	Relative Solvent Accessible Surface Area Predicts Protein Conformational Changes upon Binding. Structure, 2011, 19, 859-867.	1.6	174
165	RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Molecular Systems Biology, 2011, 7, 497.	3.2	265
166	EpiChIP: gene-by-gene quantification of epigenetic modification levels. Nucleic Acids Research, 2011, 39, e27-e27.	6.5	36
167	Sequences and topology: evolution of proteins and evolution of computational approaches. Current Opinion in Structural Biology, 2010, 20, 333-334.	2.6	1
168	Lineage-specific expansion of DNA-binding transcription factor families. Trends in Genetics, 2010, 26, 388-393.	2.9	40
169	Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Research, 2010, 38, 7364-7377.	6.5	140
170	Assessing Computational Methods of Cis-Regulatory Module Prediction. PLoS Computational Biology, 2010, 6, e1001020.	1.5	70
171	FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database. Nucleic Acids Research, 2010, 38, D443-D447.	6. 5	70
172	The Impact of Gene Expression Regulation on Evolution of Extracellular Signaling Pathways. Molecular and Cellular Proteomics, 2010, 9, 2666-2677.	2.5	8
173	Construction of a Large Extracellular Protein Interaction Network and Its Resolution by Spatiotemporal Expression Profiling. Molecular and Cellular Proteomics, 2010, 9, 2654-2665.	2.5	37
174	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	13.5	667
175	Homomeric protein complexes: evolution and assembly. Biochemical Society Transactions, 2010, 38, 879-882.	1.6	25
176	How do proteins gain new domains?. Genome Biology, 2010, 11, 126.	13.9	70
177	The developmental expression dynamics of Drosophila melanogaster transcription factors. Genome Biology, 2010, 11, R40.	13.9	21
178	The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome. Genome Research, 2009, 19, 785-794.	2.4	44
179	BloodExpress: a database of gene expression in mouse haematopoiesis. Nucleic Acids Research, 2009, 37, D873-D879.	6.5	31
180	Protein domain organisation: adding order. BMC Bioinformatics, 2009, 10, 39.	1.2	52

#	Article	IF	Citations
181	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	9.4	408
182	A census of human transcription factors: function, expression and evolution. Nature Reviews Genetics, 2009, 10, 252-263.	7.7	1,357
183	A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood, 2009, 113, e1-e9.	0.6	215
184	The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood, 2009, 113, 5456-5465.	0.6	107
185	Assembly reflects evolution of protein complexes. Nature, 2008, 453, 1262-1265.	13.7	383
186	Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nature Genetics, 2008, 40, 768-775.	9.4	1,179
187	Patterns of evolutionary constraints on genes in humans. BMC Evolutionary Biology, 2008, 8, 275.	3.2	19
188	Sequences and topology: from genome structure to protein structure. Current Opinion in Structural Biology, 2008, 18, 340-341.	2.6	2
189	Chance and necessity in chromosomal gene distributions. Trends in Genetics, 2008, 24, 216-219.	2.9	22
190	Functional protein divergence in the evolution of Homo sapiens. Genome Biology, 2008, 9, R33.	13.9	48
191	Genomes and evolution: multidimensional approaches to understanding diversity. Current Opinion in Genetics and Development, 2008, 18, 469-471.	1.5	1
192	Tight Regulation of Unstructured Proteins: From Transcript Synthesis to Protein Degradation. Science, 2008, 322, 1365-1368.	6.0	419
193	DBD––taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Research, 2008, 36, D88-D92.	6.5	254
194	The HaemAtlas: Characterising Gene Expression in Differentiated Human Blood Cells. Blood, 2008, 112, 2453-2453.	0.6	0
195	The (In)dependence of Alternative Splicing and Gene Duplication. PLoS Computational Biology, 2007, 3, e33.	1.5	66
196	Computational Identification of Site-Specific Transcription Factors in Drosophila. Fly, 2007, 1, 142-145.	0.9	4
197	Evolution of protein complexes by duplication of homomeric interactions. Genome Biology, 2007, 8, R51.	13.9	163
198	The folding and evolution of multidomain proteins. Nature Reviews Molecular Cell Biology, 2007, 8, 319-330.	16.1	341

#	Article	IF	CITATIONS
199	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	13.7	1,886
200	Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. Journal of Molecular Biology, 2006, 358, 614-633.	2.0	254
201	Divergence of Interdomain Geometry in Two-Domain Proteins. Structure, 2006, 14, 935-945.	1.6	60
202	FlyTF: a systematic review of site-specific transcription factors in the fruit fly Drosophila melanogaster. Bioinformatics, 2006, 22, 1532-1533.	1.8	90
203	3D Complex: A Structural Classification of Protein Complexes. PLoS Computational Biology, 2006, 2, e155.	1.5	299
204	DBD: a transcription factor prediction database. Nucleic Acids Research, 2006, 34, D74-D81.	6.5	186
205	The origins and evolution of functional modules: lessons from protein complexes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 507-517.	1.8	134
206	Predicting the Strongest Domain-Domain Contact in Interacting Protein Pairs. Statistical Applications in Genetics and Molecular Biology, 2006, 5, Article5.	0.2	6
207	The importance of sequence diversity in the aggregation and evolution of proteins. Nature, 2005, 438, 878-881.	13.7	291
208	Relative rates of gene fusion and fission in multi-domain proteins. Trends in Genetics, 2005, 21, 25-30.	2.9	173
209	Statistical analysis of domains in interacting protein pairs. Bioinformatics, 2005, 21, 993-1001.	1.8	81
210	Novel specificities emerge by stepwise duplication of functional modules. Genome Research, 2005, 15, 552-559.	2.4	78
211	The properties of protein family space depend on experimental design. Bioinformatics, 2005, 21, 2618-2622.	1.8	10
212	The Relationship Between Domain Duplication and Recombination. Journal of Molecular Biology, 2005, 346, 355-365.	2.0	154
213	Looking at the bigger picture. Development (Cambridge), 2004, 131, 2238-2240.	1.2	0
214	Nuclear Receptors: The Evolution of Diversity. Science Signaling, 2004, 2004, pe4-pe4.	1.6	26
215	Gene regulatory network growth by duplication. Nature Genetics, 2004, 36, 492-496.	9.4	475
216	Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431, 308-312.	13.7	921

#	Article	IF	Citations
217	Structure, function and evolution of multidomain proteins. Current Opinion in Structural Biology, 2004, 14, 208-216.	2.6	379
218	Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 2004, 14, 283-291.	2.6	683
219	Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 2004, 14, 283-283.	2.6	1
220	Supra-domains: Evolutionary Units Larger than Single Protein Domains. Journal of Molecular Biology, 2004, 336, 809-823.	2.0	157
221	Multi-domain protein families and domain pairs: comparison with known structures and a random model of domain recombination. Journal of Structural and Functional Genomics, 2003, 4, 67-78.	1.2	100
222	Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. Trends in Genetics, 2003, 19, 75-79.	2.9	75
223	Evolution of the Protein Repertoire. Science, 2003, 300, 1701-1703.	6.0	494
224	Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Research, 2003, 31, 1234-1244.	6.5	283
225	The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. Development (Cambridge), 2003, 130, 6317-6328.	1.2	106
226	Comparison of the Small Molecule Metabolic Enzymes of Escherichia coli and Saccharomyces cerevisiae. Genome Research, 2002, 12, 916-929.	2.4	24
227	Homology, Pathway Distance and Chromosomal Localization of the Small Molecule Metabolism Enzymes in Escherichia coli. Journal of Molecular Biology, 2002, 318, 911-932.	2.0	48
228	The Constraints Protein–Protein Interactions Place on Sequence Divergence. Journal of Molecular Biology, 2002, 324, 399-407.	2.0	99
229	Principles of protein-protein interactions. Bioinformatics, 2002, 18, S249-S249.	1.8	28
230	Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends in Biotechnology, 2002, 20, 407-410.	4.9	111
231	Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast11Edited by J. Karn. Journal of Molecular Biology, 2001, 307, 929-938.	2.0	167
232	Domain combinations in archaeal, eubacterial and eukaryotic proteomes. Journal of Molecular Biology, 2001, 310, 311-325.	2.0	452
233	The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. Journal of Molecular Biology, 2001, 311, 693-708.	2.0	101
234	Fast assignment of protein structures to sequences using the Intermediate Sequence Library PDB-ISL. Bioinformatics, 2000, 16 , $117-124$.	1.8	45

SARAH A TEICHMANN

#	Article	IF	CITATIONS
235	Immunoglobulin superfamily proteins in Caenorhabditis elegans 1 1Edited by G. von Heijne. Journal of Molecular Biology, 2000, 296, 1367-1383.	2.0	101
236	Making family trees from gene families. Nature Genetics, 1999, 21, 66-67.	9.4	9
237	Is There a Phylogenetic Signal in Prokaryote Proteins?. Journal of Molecular Evolution, 1999, 49, 98-107.	0.8	76
238	Advances in structural genomics. Current Opinion in Structural Biology, 1999, 9, 390-399.	2.6	137
239	In vivo negative regulation of SARS-CoV-2 receptor, ACE2, by interferons and its genetic control. Wellcome Open Research, 0, 6, 47.	0.9	2