
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5408170/publications.pdf Version: 2024-02-01

SVIVIE DOUBLIE

#	Article	IF	CITATIONS
1	Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability. DNA Repair, 2022, 109, 103247.	2.8	0
2	Probing the structure and function of polymerase Î, helicase-like domain. DNA Repair, 2022, 116, 103358.	2.8	2
3	Unique Structural Features of Mammalian NEIL2 DNA Glycosylase Prime Its Activity for Diverse DNA Substrates and Environments. Structure, 2021, 29, 29-42.e4.	3.3	19
4	Human DNA polymerase Î, harbors DNA end-trimming activity critical for DNA repair. Molecular Cell, 2021, 81, 1534-1547.e4.	9.7	25
5	A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. PLoS Genetics, 2021, 17, e1009791.	3.5	8
6	When DNA Polymerases Multitask: Functions Beyond Nucleotidyl Transfer. Frontiers in Molecular Biosciences, 2021, 8, 815845.	3.5	8
7	Caught in motion: human NTHL1 undergoes interdomain rearrangement necessary for catalysis. Nucleic Acids Research, 2021, 49, 13165-13178.	14.5	11
8	The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genetics, 2019, 15, e1008224.	3.5	32
9	I260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Research, 2018, 46, 10740-10756.	14.5	8
10	The nature of the DNA substrate influences pre-catalytic conformational changes of DNA polymerase β. Journal of Biological Chemistry, 2018, 293, 15084-15094.	3.4	7
11	Remote Mutations Induce Functional Changes in Active Site Residues of Human DNA Polymerase β. Biochemistry, 2017, 56, 2363-2371.	2.5	9
12	The A-Rule and Deletion Formation During Abasic and Oxidized Abasic Site Bypass by DNA Polymerase Î, ACS Chemical Biology, 2017, 12, 1584-1592.	3.4	10
13	Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry, 2017, 56, 5550-5559.	2.5	11
14	Expression and Structural Analyses of Human DNA Polymerase θ (POLQ). Methods in Enzymology, 2017, 592, 103-121.	1.0	13
15	The NEIL1 G83D germline DNA glycosylase variant induces genomic instability and cellular transformation. Oncotarget, 2017, 8, 85883-85895.	1.8	17
16	Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase. Nucleic Acids Research, 2016, 45, gkw1282.	14.5	11
17	DNA polymerase Î, (POLQ), double-strand break repair, and cancer. DNA Repair, 2016, 44, 22-32.	2.8	158
18	Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS ONE, 2016, 11, e0157860.	2.5	16

#	Article	IF	CITATIONS
19	Base Excision Repair in the Mitochondria. Journal of Cellular Biochemistry, 2015, 116, 1490-1499.	2.6	111
20	Human DNA polymerase Î, grasps the primer terminus to mediate DNA repair. Nature Structural and Molecular Biology, 2015, 22, 304-311.	8.2	109
21	Fluorescence Resonance Energy Transfer Studies of DNA Polymerase β. Journal of Biological Chemistry, 2014, 289, 16541-16550.	3.4	23
22	Look Ma, no PCNA: how DNA polymerase ε synthesizes long stretches of DNA without a processivity factor. Nature Structural and Molecular Biology, 2014, 21, 12-14.	8.2	2
23	A Germline Polymorphism of Thymine DNA Glycosylase Induces Genomic Instability and Cellular Transformation. PLoS Genetics, 2014, 10, e1004753.	3.5	16
24	Mechanism of Suppression of Chromosomal Instability by DNA Polymerase POLQ. PLoS Genetics, 2014, 10, e1004654.	3.5	214
25	Structural insights into eukaryotic DNA replication. Frontiers in Microbiology, 2014, 5, 444.	3.5	34
26	Genome and cancer single nucleotide polymorphisms of the human NEIL1 DNA glycosylase: Activity, structure, and the effect of editing. DNA Repair, 2014, 14, 17-26.	2.8	38
27	Crystal Structure of DNA Polymerase β with DNA Containing the Base Lesion Spiroiminodihydantoin in a Templating Position. Biochemistry, 2014, 53, 2075-2077.	2.5	18
28	Crystal Structure of Human Poly(A) Polymerase Gamma Reveals a Conserved Catalytic Core for Canonical Poly(A) Polymerases. Journal of Molecular Biology, 2014, 426, 43-50.	4.2	18
29	The E295K Cancer Variant of Human Polymerase Î ² Favors the Mismatch Conformational Pathway during Nucleotide Selection. Journal of Biological Chemistry, 2013, 288, 34850-34860.	3.4	15
30	Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases. DNA Repair, 2013, 12, 1062-1071.	2.8	21
31	Neil3, the final frontier for the DNA glycosylases that recognize oxidative damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 4-11.	1.0	72
32	Structural Characterization of a Mouse Ortholog of Human NEIL3 with a Marked Preference for Single-Stranded DNA. Structure, 2013, 21, 247-256.	3.3	51
33	Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore Germination. PLoS Pathogens, 2013, 9, e1003165.	4.7	99
34	Structural Studies of a Bacterial tRNAHIS Guanylyltransferase (Thg1)-Like Protein, with Nucleotide in the Activation and Nucleotidyl Transfer Sites. PLoS ONE, 2013, 8, e67465.	2.5	15
35	8-Oxoguanine DNA Glycosylases: One Lesion, Three Subfamilies. International Journal of Molecular Sciences, 2012, 13, 6711-6729.	4.1	36
36	Structural Characterization of Viral Ortholog of Human DNA Glycosylase NEIL1 Bound to Thymine Glycol or 5-Hydroxyuracil-containing DNA. Journal of Biological Chemistry, 2012, 287, 4288-4298.	3.4	48

#	Article	IF	CITATIONS
37	Structural and biochemical studies of a plant formamidopyrimidine-DNA glycosylase reveal why eukaryotic Fpg glycosylases do not excise 8-oxoguanine. DNA Repair, 2012, 11, 714-725.	2.8	46
38	Consequences and Repair of Oxidative DNA Damage. Issues in Toxicology, 2012, , 115-159.	0.1	10
39	The Fpg/Nei Family of DNA Glycosylases. Progress in Molecular Biology and Translational Science, 2012, 110, 71-91.	1.7	78
40	The Miscoding Potential of 5-Hydroxycytosine Arises Due to Template Instability in the Replicative Polymerase Active Site. Biochemistry, 2011, 50, 10350-10358.	2.5	18
41	Lesion Bypass Activity of DNA Polymerase Î, (POLQ) Is an Intrinsic Property of the Pol Domain and Depends on Unique Sequence Inserts. Journal of Molecular Biology, 2011, 405, 642-652.	4.2	81
42	A Crystallographic Study of the Role of Sequence Context in Thymine Glycol Bypass by a Replicative DNA Polymerase Serendipitously Sheds Light on the Exonuclease Complex. Journal of Molecular Biology, 2011, 412, 22-34.	4.2	25
43	Crystal Structure of a Human Cleavage Factor CFIm25/CFIm68/RNA Complex Provides an Insight into Poly(A) Site Recognition and RNA Looping. Structure, 2011, 19, 368-377.	3.3	127
44	DNA polymerases provide a canon of strategies for translesion synthesis past oxidatively generated lesions. Current Opinion in Structural Biology, 2011, 21, 358-369.	5.7	34
45	Structural biology of poly(A) site definition. Wiley Interdisciplinary Reviews RNA, 2011, 2, 732-747.	6.4	45
46	Purification, crystallization and preliminary X-ray diffraction of a disulfide cross-linked complex between bovine poly(A) polymerase and a chemically modified 15-mer oligo(A) RNA. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 241-244.	0.7	4
47	The structure of human Cleavage Factor I _m hints at functions beyond UGUA-specific RNA binding. RNA Biology, 2011, 8, 748-753.	3.1	56
48	Phosphonoformic Acid Inhibits Viral Replication by Trapping the Closed Form of the DNA Polymerase. Journal of Biological Chemistry, 2011, 286, 25246-25255.	3.4	48
49	Structural basis of UGUA recognition by the Nudix protein CFI _m 25 and implications for a regulatory role in mRNA 3′ processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10062-10067.	7.1	123
50	tRNA ^{His} guanylyltransferase (THG1), a unique 3′-5′ nucleotidyl transferase, shares unexpected structural homology with canonical 5′-3′ DNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20305-20310.	7.1	47
51	Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin [,] . Biochemistry, 2010, 49, 2502-2509.	2.5	37
52	The C-terminal Lysine of Ogg2 DNA Glycosylases is a Major Molecular Determinant for Guanine/8-Oxoguanine Distinction. Journal of Molecular Biology, 2010, 397, 46-56.	4.2	21
53	Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69. Biochemistry, 2010, 49, 2317-2325.	2.5	19
54	Structural Characterization of a Viral NEIL1 Ortholog Unliganded and Bound to Abasic Site-containing DNA. Journal of Biological Chemistry, 2009, 284, 26174-26183.	3.4	41

#	Article	IF	CITATIONS
55	Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction. Structure, 2009, 17, 703-712.	3.3	20
56	Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. DNA Repair, 2009, 8, 1283-1289.	2.8	13
57	Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine. Journal of Molecular Biology, 2009, 387, 669-679.	4.2	14
58	The Soul of a New Structure-Function Machine. Structure, 2008, 16, 3-4.	3.3	1
59	Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 206-216.	1.9	21
60	Crystal structure of the 25 kDa subunit of human cleavage factor I m. Nucleic Acids Research, 2008, 36, 3474-3483.	14.5	39
61	Crystallographic Software: A Sustainable Resource for the Community. , 2007, 364, 273-278.		1
62	Structural and Biochemical Investigation of the Role in Proofreading of a Î ² Hairpin Loop Found in the Exonuclease Domain of a Replicative DNA Polymerase of the B Family. Journal of Biological Chemistry, 2007, 282, 1432-1444.	3.4	67
63	A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 814-818.	7.1	91
64	Caught Bending the A-Rule:  Crystal Structures of Translesion DNA Synthesis with a Non-Natural Nucleotide. Biochemistry, 2007, 46, 10551-10561.	2.5	40
65	Production of Selenomethionyl Proteins in Prokaryotic and Eukaryotic Expression Systems. Methods in Molecular Biology, 2007, 363, 91-108.	0.9	116
66	Bumps in the road: how replicative DNA polymerases see DNA damage. Current Opinion in Structural Biology, 2005, 15, 86-93.	5.7	46
67	Activation of the Hetero-octameric ATP Phosphoribosyl Transferase through Subunit Interface Rearrangement by a tRNA Synthetase Paralog. Journal of Biological Chemistry, 2005, 280, 34096-34104.	3.4	30
68	The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10284-10289.	7.1	132
69	Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. EMBO Journal, 2004, 23, 1483-1493.	7.8	134
70	Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO Journal, 2004, 23, 3452-3461.	7.8	200
71	Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7. Nature Structural and Molecular Biology, 2004, 11, 784-790.	8.2	66
72	Infidelity Out in the Open. Structure, 2004, 12, 1749-1750.	3.3	1

#	ARTICLE	IF	CITATIONS
73	Overproduction, crystallization and preliminary crystallographic analysis of a novel human DNA-repair enzyme that recognizes oxidative DNA damage. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1142-1144.	2.5	28
74	Biochemical and Structural Insights into Substrate Binding and Catalytic Mechanism of Mammalian Poly(A) Polymerase. Journal of Molecular Biology, 2004, 341, 911-925.	4.2	42
75	Cryocooling of Macromolecular Crystals: Optimization Methods. Methods in Enzymology, 2003, 368, 188-216.	1.0	33
76	The Motif D Loop of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Critical for Nucleoside 5′-Triphosphate Selectivity. Journal of Biological Chemistry, 1999, 274, 35768-35776.	3.4	19
77	An open and closed case for all polymerases. Structure, 1999, 7, R31-R35.	3.3	292
78	Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 à resolution. Nature, 1998, 391, 251-258.	27.8	1,207
79	The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 1998, 8, 704-712.	5.7	185
80	Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase. Biochemistry and Cell Biology, 1997, 75, 709-715.	2.0	2
81	[29] Preparation of selenomethionyl proteins for phase determination. Methods in Enzymology, 1997, 276, 523-530.	1.0	801
82	Crystallization and preliminary crystallographic analysis of the signal recognition particle SRPÎ 14-9 fusion protein. FEBS Letters, 1996, 384, 215-218.	2.8	4
83	Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Letters, 1996, 384, 219-221.	2.8	52
84	A Concerted Tryptophanyl-adenylate-dependent Conformational Change inBacillus subtilisTryptophanyl-tRNA Synthetase Revealed by the Fluorescence of Trp92. Journal of Molecular Biology, 1996, 260, 446-466.	4.2	21
85	Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure, 1995, 3, 17-31.	3.3	181
86	Quantitative Analysis of Crystal Growth. Journal of Molecular Biology, 1994, 238, 346-365.	4.2	32
87	Production of Selenomethionyl Proteins in Prokaryotic and Eukaryotic Expression Systems. , 0, , 91-108.		3