List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5407731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of fresh-cut process on γ-aminobutyric acid (GABA) metabolism and sensory properties in carrot. Journal of Food Science and Technology, 2022, 59, 552-561.	2.8	7
2	Genomeâ€wide identification of heat shock transcription factors and potential role in regulation of antioxidant response under hot water and glycine betaine treatments in coldâ€stored peaches. Journal of the Science of Food and Agriculture, 2022, 102, 628-643.	3.5	10
3	Interaction of PpWRKY46 and PpWRKY53 regulates energy metabolism in MeJA primed disease resistance of peach fruit. Plant Physiology and Biochemistry, 2022, 171, 157-168.	5.8	17
4	2,4-epibrassinolide enhance chilling tolerance of loquat fruit by regulating cell wall and membrane fatty acid metabolism. Scientia Horticulturae, 2022, 295, 110813.	3.6	20
5	Cold shock treatment alleviates chilling injury in peach fruit by regulating antioxidant capacity and membrane lipid metabolism. Food Quality and Safety, 2022, 6, .	1.8	10
6	24-Epibrassinolide improves chilling tolerance by regulating PpCBF5-mediated membrane lipid metabolism in peach fruit. Postharvest Biology and Technology, 2022, 186, 111844.	6.0	27
7	MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling. Journal of Experimental Botany, 2022, 73, 3787-3806.	4.8	8
8	γ-aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins. Plant Physiology and Biochemistry, 2022, 180, 9-16.	5.8	9
9	Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine. Food Research International, 2022, 157, 111204.	6.2	21
10	High relative humidity enhances chilling tolerance of zucchini fruit by regulating sugar and ethanol metabolisms during cold storage. Postharvest Biology and Technology, 2022, 189, 111932.	6.0	10
11	Melatoninâ€mediated postharvest quality and antioxidant properties of fresh fruits: A comprehensive metaâ€analysis. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3205-3226.	11.7	10
12	Hydrogen sulfide alleviates chilling injury in peach fruit by maintaining cell structure integrity via regulating endogenous H2S, antioxidant and cell wall metabolisms. Food Chemistry, 2022, 391, 133283.	8.2	35
13	EjCaM7 and EjCAMTA3 synergistically alleviate chilling-induced lignification in loquat fruit by repressing the expression of lignin biosynthesis genes. Postharvest Biology and Technology, 2022, 192, 112010.	6.0	11
14	High relative humidity (HRH) storage alleviates chilling injury of zucchini fruit by promoting the accumulation of proline and ABA. Postharvest Biology and Technology, 2021, 171, 111344.	6.0	33
15	PpWRKY45 is involved in methyl jasmonate primed disease resistance by enhancing the expression of jasmonate acid biosynthetic and pathogenesis-related genes of peach fruit. Postharvest Biology and Technology, 2021, 172, 111390.	6.0	31
16	Dual function of <scp>WWRKY18</scp> transcription factor in the βâ€aminobutyric acidâ€activated priming defense in grapes. Physiologia Plantarum, 2021, 172, 1477-1492.	5.2	12
17	Heat Shock Protein HSP24 Is Involved in the BABA-Induced Resistance to Fungal Pathogen in Postharvest Grapes Underlying an NPR1-Dependent Manner. Frontiers in Plant Science, 2021, 12, 646147.	3.6	12
18	Involvement of PpWRKY70 in the methyl jasmonate primed disease resistance against Rhizopus stolonifer of peaches via activating phenylpropanoid pathway. Postharvest Biology and Technology, 2021, 174, 111466.	6.0	29

#	Article	IF	CITATIONS
19	Sucrose metabolism and sensory evaluation in peach as influenced by β-aminobutyric acid (BABA)-induced disease resistance and the transcriptional mechanism involved. Postharvest Biology and Technology, 2021, 174, 111465.	6.0	11
20	Near-saturated relative humidity alleviates chilling injury in zucchini fruit through its regulation of antioxidant response and energy metabolism. Food Chemistry, 2021, 351, 129336.	8.2	24
21	Effects of CaCl2 Treatment Alleviates Chilling Injury of Loquat Fruit (Eribotrya japonica) by Modulating ROS Homeostasis. Foods, 2021, 10, 1662.	4.3	42
22	Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. Molecular Plant-Microbe Interactions, 2021, 34, 1250-1266.	2.6	11
23	Physiological and metabolomic analyses of hot water treatment on amino acids and phenolic metabolisms in peach cold tolerance. Postharvest Biology and Technology, 2021, 179, 111593.	6.0	19
24	Activation of the BABAâ€induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit. Molecular Plant Pathology, 2021, 22, 1624-1640.	4.2	13
25	Transcriptomic analysis reveals key genes associated with the biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus undatus). Postharvest Biology and Technology, 2021, 181, 111684.	6.0	15
26	CaM enhances chilling tolerance of peach fruit by regulating energy and GABA metabolism. Postharvest Biology and Technology, 2021, 181, 111691.	6.0	20
27	PpWRKY22 physically interacts with PpHOS1/PpTGA1 and positively regulates several SA-responsive PR genes to modulate disease resistance in BABA-primed peach fruit. Scientia Horticulturae, 2021, 290, 110479.	3.6	10
28	Mechanisms of chilling tolerance in melatonin treated postharvest fruits and vegetables: a review. Journal of Future Foods, 2021, 1, 156-167.	4.7	14
29	Isolation and identification of polysaccharides from Pythium arrhenomanes and application to strawberry fruit (Fragaria ananassa Duch.) preservation. Food Chemistry, 2020, 309, 125604.	8.2	20
30	PpHOS1, a RING E3 ubiquitin ligase, interacts with PpWRKY22 in the BABA-induced priming defense of peach fruit against Rhizopus stolonifer. Postharvest Biology and Technology, 2020, 159, 111029.	6.0	23
31	A Combination of Melatonin and Ethanol Treatment Improves Postharvest Quality in Bitter Melon Fruit. Foods, 2020, 9, 1376.	4.3	24
32	Translocation of PpNPR1 is required for β-aminobutyric acid-triggered resistance against Rhizopus stolonifer in peach fruit. Scientia Horticulturae, 2020, 272, 109556.	3.6	5
33	Redox status regulates subcelluar localization of PpTGA1 associated with a BABA-induced priming defence againstARhizopus rot in peach fruit. Molecular Biology Reports, 2020, 47, 6657-6668.	2.3	5
34	β-aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. Plant Physiology and Biochemistry, 2020, 156, 552-565.	5.8	15
35	Pre-storage hot water treatment enhances chilling tolerance of zucchini (Cucurbita pepo L.) squash by regulating arginine metabolism. Postharvest Biology and Technology, 2020, 166, 111229.	6.0	31
36	Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chemistry, 2020, 315, 126295.	8.2	46

#	Article	IF	CITATIONS
37	Effects of exogenous calcium and calcium chelant on cold tolerance of postharvest loquat fruit. Scientia Horticulturae, 2020, 269, 109391.	3.6	37
38	Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chemistry, 2019, 272, 530-538.	8.2	147
39	UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries. Postharvest Biology and Technology, 2019, 156, 110945.	6.0	44
40	Cold plasma treatment induces phenolic accumulation and enhances antioxidant activity in fresh-cut pitaya (Hylocereus undatus) fruit. LWT - Food Science and Technology, 2019, 115, 108447.	5.2	82
41	Biochemical and molecular effects of glycine betaine treatment on membrane fatty acid metabolism in cold stored peaches. Postharvest Biology and Technology, 2019, 154, 58-69.	6.0	52
42	Physiological and Metabolomic Analysis of Cold Plasma Treated Fresh-Cut Strawberries. Journal of Agricultural and Food Chemistry, 2019, 67, 4043-4053.	5.2	72
43	Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots. Postharvest Biology and Technology, 2019, 152, 111-117.	6.0	45
44	Effect of Cutting Styles on Quality and Antioxidant Activity of Stored Fresh-Cut Sweet Potato (Ipomoea batatas L.) Cultivars. Foods, 2019, 8, 674.	4.3	15
45	Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid. Scientia Horticulturae, 2019, 244, 352-364.	3.6	29
46	Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chemistry, 2018, 239, 68-74.	8.2	113
47	Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biology and Technology, 2018, 137, 106-112.	6.0	58
48	Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biology and Technology, 2018, 144, 20-28.	6.0	104
49	Effect of Ultrasonic Treatment Combined with Peracetic Acid Treatment Reduces Decay and Maintains Quality in Loquat Fruit. Journal of Food Quality, 2018, 2018, 1-8.	2.6	14
50	Proanthocyanidin Synthesis in Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Fruits. Frontiers in Plant Science, 2018, 9, 212.	3.6	21
51	Effect of β-Aminobutyric Acid on Disease Resistance Against Rhizopus Rot in Harvested Peaches. Frontiers in Microbiology, 2018, 9, 1505.	3.5	27
52	Methyl jasmonate primes defense responses against wounding stress and enhances phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biology and Technology, 2018, 145, 101-107.	6.0	53
53	Responses of Fresh-Cut Strawberries to Ethanol Vapor Pretreatment: Improved Quality Maintenance and Associated Antioxidant Metabolism in Gene Expression and Enzyme Activity Levels. Journal of Agricultural and Food Chemistry, 2018, 66, 8382-8390.	5.2	25
54	Increased temperature elicits higher phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biology and Technology, 2017, 129, 90-96.	6.0	37

#	Article	IF	CITATIONS
55	Physiological and Transcriptomic Analysis Validates Previous Findings of Changes in Primary Metabolism for the Production of Phenolic Antioxidants in Wounded Carrots. Journal of Agricultural and Food Chemistry, 2017, 65, 7159-7167.	5.2	30
56	UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 2017, 225, 106-111.	3.6	51
57	The effect of temperature on phenolic content in wounded carrots. Food Chemistry, 2017, 215, 116-123.	8.2	84
58	Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit. Postharvest Biology and Technology, 2017, 124, 1-7.	6.0	80
59	Induction of Direct or Priming Resistance against <i>Botrytis cinerea</i> in Strawberries by β-Aminobutyric Acid and Their Effects on Sucrose Metabolism. Journal of Agricultural and Food Chemistry, 2016, 64, 5855-5865.	5.2	54
60	Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biology and Technology, 2016, 118, 71-78.	6.0	40
61	Effect of hot water combined with glycine betaine alleviates chilling injury in cold-stored loquat fruit. Postharvest Biology and Technology, 2016, 118, 141-147.	6.0	69
62	Influence of wounding intensity and storage temperature on quality and antioxidant activity of fresh-cut Welsh onions. Scientia Horticulturae, 2016, 212, 203-209.	3.6	21
63	Effect of 1-methylcyclopropene on senescence and sugar metabolism in harvested broccoli florets. Postharvest Biology and Technology, 2016, 116, 45-49.	6.0	44
64	Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Postharvest Biology and Technology, 2016, 114, 104-110.	6.0	95
65	Reducing yellowing and enhancing antioxidant capacity of broccoli in storage by sucrose treatment. Postharvest Biology and Technology, 2016, 112, 39-45.	6.0	44
66	Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes. Postharvest Biology and Technology, 2016, 111, 197-204.	6.0	36
67	Methyl Jasmonate Primed Defense Responses Against Penicillium expansum in Sweet Cherry Fruit. Plant Molecular Biology Reporter, 2015, 33, 1464-1471.	1.8	29
68	Methyl jasmonate primes defense responses against Botrytis cinerea and reduces disease development in harvested table grapes. Scientia Horticulturae, 2015, 192, 218-223.	3.6	70
69	Hot air treatment induces resistance against blue mold decay caused by Penicillium expansum in sweet cherry (Prunus cerasus L.) fruit. Scientia Horticulturae, 2015, 189, 74-80.	3.6	16
70	Effects of benzothiadiazole on disease resistance and soluble sugar accumulation in grape berries and its possible cellular mechanisms involved. Postharvest Biology and Technology, 2015, 102, 51-60.	6.0	34
71	Effect of ethanol treatment on disease resistance against anthracnose rot in postharvest loquat fruit. Scientia Horticulturae, 2015, 188, 115-121.	3.6	38
72	Low-Temperature Conditioning Alleviates Chilling Injury in Loquat Fruit and Regulates Glycine Betaine Content and Energy Status. Journal of Agricultural and Food Chemistry, 2015, 63, 3654-3659.	5.2	79

#	Article	IF	CITATIONS
73	Effect of β-aminobutyric acid on cell wall modification and senescence in sweet cherry during storage at 20°C. Food Chemistry, 2015, 175, 471-477.	8.2	83
74	Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. International Journal of Food Microbiology, 2015, 194, 32-39.	4.7	69
75	Effect of high pressure processing and thermal treatment on physicochemical parameters, antioxidant activity and volatile compounds of green asparagus juice. LWT - Food Science and Technology, 2015, 62, 927-933.	5.2	80
76	In vitro inhibition and in vivo induction of defense response against Penicillium expansum in sweet cherry fruit by postharvest applications of Bacillus cereus AR156. Postharvest Biology and Technology, 2015, 101, 15-17.	6.0	17
77	Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chemistry, 2015, 172, 705-709.	8.2	93
78	Bacillus cereus AR156-Induced Resistance to Colletotrichum acutatum Is Associated with Priming of Defense Responses in Loquat Fruit. PLoS ONE, 2014, 9, e112494.	2.5	45
79	Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit. Food Chemistry, 2014, 163, 92-96.	8.2	30
80	Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chemistry, 2014, 145, 86-89.	8.2	68
81	Domestic cooking methods affect the nutritional quality of red cabbage. Food Chemistry, 2014, 161, 162-167.	8.2	86
82	Relationship between Sucrose Metabolism and Anthocyanin Biosynthesis During Ripening in Chinese Bayberry Fruit. Journal of Agricultural and Food Chemistry, 2014, 62, 10522-10528.	5.2	35
83	Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biology and Technology, 2014, 98, 90-97.	6.0	94
84	Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents. Food Chemistry, 2014, 161, 87-93.	8.2	198
85	Reducing Chilling Injury of Loquat Fruit by Combined Treatment with Hot Air and Methyl Jasmonate. Food and Bioprocess Technology, 2014, 7, 2259-2266.	4.7	67
86	Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit. International Journal of Food Microbiology, 2013, 164, 141-147.	4.7	46
87	Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chemistry, 2013, 136, 400-406.	8.2	59
88	Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry, 2013, 136, 139-143.	8.2	102
89	Maintaining quality and bioactive compounds of broccoli by combined treatment with 1â€methylcyclopropene and 6â€benzylaminopurine. Journal of the Science of Food and Agriculture, 2013, 93, 1156-1161.	3.5	17
90	Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture, 2013, 93, 1827-1832.	3.5	164

#	Article	IF	CITATIONS
91	Effect of ethanol treatment on quality and antioxidant activity in postharvest broccoli florets. European Food Research and Technology, 2012, 235, 793-800.	3.3	36
92	6-Benzylaminopurine Delays Senescence and Enhances Health-Promoting Compounds of Harvested Broccoli. Journal of Agricultural and Food Chemistry, 2012, 60, 234-240.	5.2	58
93	Enhancing Antioxidant Capacity and Reducing Decay of Chinese Bayberries by Essential Oils. Journal of Agricultural and Food Chemistry, 2012, 60, 3769-3775.	5.2	72
94	Combined Salicyclic Acid and Ultrasound Treatments for Reducing the Chilling Injury on Peach Fruit. Journal of Agricultural and Food Chemistry, 2012, 60, 1209-1212.	5.2	66
95	Effect of nanocompositeâ€based packaging on preservation quality of green tea. International Journal of Food Science and Technology, 2012, 47, 572-578.	2.7	20
96	Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chemistry, 2012, 132, 399-405.	8.2	60
97	MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. Food Chemistry, 2012, 133, 1466-1470.	8.2	118
98	Optimization of Enzymatic Clarification of Green Asparagus Juice Using Response Surface Methodology. Journal of Food Science, 2012, 77, C665-70.	3.1	14
99	Effect of 1-methylcyclopene on senescence and quality maintenance of green bell pepper fruit during storage at 20°C. Postharvest Biology and Technology, 2012, 70, 1-6.	6.0	34
100	Effect of Exogenous γ-Aminobutyric Acid Treatment on Proline Accumulation and Chilling Injury in Peach Fruit after Long-Term Cold Storage. Journal of Agricultural and Food Chemistry, 2011, 59, 1264-1268.	5.2	169
101	Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control, 2011, 22, 82-87.	5.5	35
102	Biological Control of Green Mould Decay in Postharvest Chinese Bayberries by Pichia membranaefaciens. Journal of Phytopathology, 2011, 159, no-no.	1.0	1
103	Effect of 1â€Methylcyclopropene on Chilling Injury and Quality of Peach Fruit during Cold Storage. Journal of Food Science, 2011, 76, S485-91.	3.1	56
104	MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biology and Technology, 2011, 59, 324-326.	6.0	84
105	1â€MCP suppresses ethylene biosynthesis and delays softening of â€~Hami' melon during storage at ambient temperature. Journal of the Science of Food and Agriculture, 2011, 91, 2684-2688.	3.5	13
106	Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chemistry, 2011, 127, 1777-1783.	8.2	102
107	Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chemistry, 2011, 124, 262-270.	8.2	101
108	The effects of the combination of Pichia membranefaciens and BTH on controlling of blue mould decay caused by Penicillium expansum in peach fruit. Food Chemistry, 2011, 124, 991-996.	8.2	31

YONGHUA ZHENG

#	Article	IF	CITATIONS
109	Î ³ -Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chemistry, 2011, 129, 1619-1622.	8.2	116
110	Effect of 1â€methylcyclopropene on anthracnose rot caused by <i>Colletotrichum acutatum</i> and disease resistance in loquat fruit. Journal of the Science of Food and Agriculture, 2010, 90, 2289-2294.	3.5	28
111	Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit. Postharvest Biology and Technology, 2010, 58, 93-97.	6.0	88
112	Effect of hot air treatment on postharvest mould decay in Chinese bayberry fruit and the possible mechanisms. International Journal of Food Microbiology, 2010, 141, 11-16.	4.7	46
113	Effects of heat treatment on internal browning and membrane fatty acid in loquat fruit in response to chilling stress. Journal of the Science of Food and Agriculture, 2010, 90, 1557-1561.	3.5	117
114	A combination of hot air treatment and nanoâ€packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. Journal of the Science of Food and Agriculture, 2010, 90, 2427-2432.	3.5	35
115	Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 2010, 118, 641-647.	8.2	100
116	Effect of Methyl Jasmonate in Combination with Ethanol Treatment on Postharvest Decay and Antioxidant Capacity in Chinese Bayberries. Journal of Agricultural and Food Chemistry, 2010, 58, 9597-9604.	5.2	33
117	A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology, 2009, 52, 24-29.	6.0	116
118	Effect of yeast antagonist in combination with methyl jasmonate treatment on postharvest anthracnose rot of loquat fruit. Biological Control, 2009, 50, 73-77.	3.0	27
119	Enhancing disease resistance in peach fruit with methyl jasmonate. Journal of the Science of Food and Agriculture, 2009, 89, 802-808.	3.5	90
120	Effects of shortâ€ŧerm N ₂ treatment on quality and antioxidant ability of loquat fruit during cold storage. Journal of the Science of Food and Agriculture, 2009, 89, 1159-1163.	3.5	16
121	Lowâ€ŧemperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture, 2009, 89, 1690-1696.	3.5	67
122	Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit. Journal of the Science of Food and Agriculture, 2009, 89, 2064-2070.	3.5	54
123	Effects of 1â€methylcyclopropene on oxidative damage, phospholipases and chilling injury in loquat fruit. Journal of the Science of Food and Agriculture, 2009, 89, 2214-2220.	3.5	34
124	Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis) Tj ETQq0 0 0 r	gBT/Over	lo _၄ န္ ၂၀ Tf 50
125	Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry, 2009, 115, 1458-1463.	8.2	256

126Effect of 1-Methylcyclopropene Treatment on Chilling Injury, Fatty Acid and Cell Wall Polysaccharide
Composition in Loquat Fruit. Journal of Agricultural and Food Chemistry, 2009, 57, 8439-8443.5.238

#	Article	IF	CITATIONS
127	Effect of High Oxygen Atmosphere Storage on Quality, Antioxidant Enzymes, and DPPH-Radical Scavenging Activity of Chinese Bayberry Fruit. Journal of Agricultural and Food Chemistry, 2009, 57, 176-181.	5.2	126
128	Methyl Jasmonate Reduces Decay and Enhances Antioxidant Capacity in Chinese Bayberries. Journal of Agricultural and Food Chemistry, 2009, 57, 5809-5815.	5.2	104
129	Control of anthracnose rot and quality deterioration in loquat fruit with methyl jasmonate. Journal of the Science of Food and Agriculture, 2008, 88, 1598-1602.	3.5	38
130	Improved control of anthracnose rot in loquat fruit by a combination treatment of Pichia membranifaciens with CaCl2. International Journal of Food Microbiology, 2008, 126, 216-220.	4.7	34
131	Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biology and Technology, 2008, 47, 151-158.	6.0	74
132	Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biology and Technology, 2008, 49, 301-307.	6.0	100
133	Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control, 2008, 19, 470-474.	5.5	97
134	EFFECTS OF STORAGE TEMPERATURE ON TEXTURAL PROPERTIES OF CHINESE BAYBERRY FRUIT. Journal of Texture Studies, 2007, 38, 166-177.	2.5	59
135	Role of pure oxygen treatment in browning of litchi fruit after harvest. Plant Science, 2004, 167, 665-668.	3.6	63
136	Preservation treatment with methyl jasmonate alleviates chilling injury disorder in pear fruit by regulating antioxidant system and energy status. Journal of Food Processing and Preservation, 0, , .	2.0	3