
Xiuyang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5405639/publications.pdf Version: 2024-02-01

XIIIYANG LU

#	Article	IF	CITATIONS
1	Catalytic hydrothermal deoxygenation of palmitic acid. Energy and Environmental Science, 2010, 3, 311.	30.8	213
2	Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C. ChemSusChem, 2011, 4, 481-486.	6.8	209
3	Recent Advances in Catalytic Transfer Hydrogenation with Formic Acid over Heterogeneous Transition Metal Catalysts. ACS Catalysis, 2021, 11, 1071-1095.	11.2	146
4	<i>In situ</i> hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20, 197-205.	9.0	142
5	Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. Journal of Chromatography A, 2008, 1193, 136-141.	3.7	141
6	Kinetics of Non-catalyzed Decomposition of D-xylose in High Temperature Liquid Water. Chinese Journal of Chemical Engineering, 2007, 15, 666-669.	3.5	126
7	Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. ACS Catalysis, 2011, 1, 227-231.	11.2	122
8	Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel, 2016, 178, 49-55.	6.4	113
9	Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water. Chinese Journal of Chemical Engineering, 2008, 16, 890-894.	3.5	106
10	Pt/Solid-Base: A Predominant Catalyst for Glycerol Hydrogenolysis in a Base-Free Aqueous Solution. Catalysis Letters, 2009, 130, 261-265.	2.6	105
11	Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. Journal of Analytical and Applied Pyrolysis, 2018, 131, 76-84.	5.5	80
12	Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-Al2O3 catalyst. Molecular Catalysis, 2018, 445, 94-101.	2.0	79
13	Prediction of Carbon Dioxide Adsorption via Deep Learning. Angewandte Chemie - International Edition, 2019, 58, 259-263.	13.8	74
14	Adsorption Equilibria of CO ₂ , CH ₄ , N ₂ , O ₂ , and Ar on High Silica Zeolites. Journal of Chemical & Engineering Data, 2011, 56, 4017-4023.	1.9	73
15	Synergy of Lewis and BrÃ,nsted Acids on Catalytic Hydrothermal Decomposition of Hexose to Levulinic Acid. Energy & Fuels, 2013, 27, 6973-6978.	5.1	66
16	Efficient and stable Cu-Ni/ZrO2 catalysts for in situ hydrogenation and deoxygenation of oleic acid into heptadecane using methanol as a hydrogen donor. Fuel, 2018, 230, 211-217.	6.4	66
17	Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil. Bioresource Technology, 2013, 146, 569-573.	9.6	65
18	Catalytic in-Situ Hydrogenation of Furfural over Bimetallic Cu–Ni Alloy Catalysts in Isopropanol. Industrial & Engineering Chemistry Research, 2018, 57, 4225-4230.	3.7	65

#	Article	IF	CITATIONS
19	Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides. Chemistry of Materials, 2019, 31, 5529-5536.	6.7	65
20	Catalytic transfer hydrogenation of oleic acid to octadecanol over magnetic recoverable cobalt catalysts. Green Chemistry, 2019, 21, 314-320.	9.0	63
21	Enhancement in the aromatic yield from the catalytic fast pyrolysis of rice straw over hexadecyl trimethyl ammonium bromide modified hierarchical HZSM-5. Bioresource Technology, 2018, 256, 241-246.	9.6	60
22	Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197, 106205.	7.2	60
23	Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon. Scientific Reports, 2016, 6, 27820.	3.3	58
24	Atomic layer deposition of Pt nanoparticles on low surface area zirconium oxide for the efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2018, 555, 98-107.	4.3	56
25	Direct production of aviation fuels from microalgae lipids in water. Fuel, 2015, 139, 678-683.	6.4	55
26	Microwave-Assisted Degradation of Lignin Model Compounds in Imidazolium-Based Ionic Liquids. Energy & Fuels, 2014, 28, 1380-1386.	5.1	52
27	Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles. Acta Biomaterialia, 2017, 51, 471-478.	8.3	52
28	CuZnCoOx multifunctional catalyst for in situ hydrogenation of 5-hydroxymethylfurfural with ethanol as hydrogen carrier. Journal of Catalysis, 2019, 373, 314-321.	6.2	50
29	Transfer Hydrogenation of Fatty Acids on Cu/ZrO ₂ : Demystifying the Role of Carrier Structure and Metal–Support Interface. ACS Catalysis, 2020, 10, 9098-9108.	11.2	50
30	One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol. Carbohydrate Research, 2012, 358, 37-39.	2.3	46
31	Cuâ^'Ni Bimetallic Hydroxide Catalyst for Efficient Electrochemical Conversion of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemElectroChem, 2019, 6, 5797-5801.	3.4	45
32	Prediction of Carbon Dioxide Adsorption via Deep Learning. Angewandte Chemie, 2019, 131, 265-269.	2.0	45
33	Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles. Journal of Materials Chemistry A, 2016, 4, 5842-5848.	10.3	43
34	Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions. Catalysis Communications, 2018, 110, 23-27.	3.3	42
35	Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate. ACS Catalysis, 2019, 9, 1923-1930.	11.2	39
36	Controlled synthesis of hierarchical ZSM-5 for catalytic fast pyrolysis of cellulose to aromatics. Journal of Materials Chemistry A, 2018, 6, 21178-21185.	10.3	38

#	Article	IF	CITATIONS
37	Adsorption of alkaloids on ordered mesoporous carbon. Journal of Colloid and Interface Science, 2013, 408, 181-190.	9.4	37
38	Bifunctional CuNi/CoOx catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel, 2020, 265, 116913.	6.4	35
39	Hydrothermal decomposition of glucose and fructose with inorganic and organic potassium salts. Bioresource Technology, 2012, 119, 48-54.	9.6	33
40	Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions. Journal of Colloid and Interface Science, 2013, 400, 78-87.	9.4	30
41	Catalytic <i>In Situ</i> Hydrogenation of Fatty Acids into Fatty Alcohols over Cu-Based Catalysts with Methanol in Hydrothermal Media. Energy & Fuels, 2017, 31, 12624-12632.	5.1	29
42	Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol. Chemical Engineering Journal, 2018, 333, 434-442.	12.7	27
43	Adsorption of Myricetrin, Puerarin, Naringin, Rutin, and Neohesperidin Dihydrochalcone Flavonoids on Macroporous Resins. Journal of Chemical & Engineering Data, 2013, 58, 2527-2537.	1.9	26
44	Direct Production of Aviation Fuel Range Hydrocarbons and Aromatics from Oleic Acid without an Added Hydrogen Donor. Energy & Fuels, 2016, 30, 7291-7297.	5.1	25
45	CoZn-ZIF-derived ZnCo ₂ O ₄ -framework for the synthesis of alcohols from glycerol. Green Chemistry, 2018, 20, 4299-4307.	9.0	25
46	Hydrothermal conversion of the hyperaccumulator Sedum alfredii Hance for efficiently recovering heavy metals and bio-oil. Journal of Environmental Chemical Engineering, 2019, 7, 103321.	6.7	25
47	Catalytic Decarboxylation and Aromatization of Oleic Acid over Ni/AC without an Added Hydrogen Donor. Industrial & Engineering Chemistry Research, 2018, 57, 8443-8448.	3.7	22
48	Adsorption of Berberine Hydrochloride, Ligustrazine Hydrochloride, Colchicine, and Matrine Alkaloids on Macroporous Resins. Journal of Chemical & Engineering Data, 2013, 58, 1271-1279.	1.9	21
49	Role of Solvent in Catalytic Conversion of Oleic Acid to Aviation Biofuels. Energy & Fuels, 2017, 31, 6163-6172.	5.1	21
50	Catalytic decarbonylation of stearic acid to hydrocarbons over activated carbon-supported nickel. Sustainable Energy and Fuels, 2018, 2, 1837-1843.	4.9	21
51	Tannin-derived bimetallic CuCo/C catalysts for an efficient in-situ hydrogenation of lauric acid in methanol-water media. Fuel Processing Technology, 2020, 205, 106426.	7.2	19
52	Formic acid enabled selectivity boosting in transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-furandimethanol on highly dispersed Co–N _x sites. Catalysis Science and Technology, 2021, 11, 1451-1457.	4.1	19
53	Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions. Journal of Colloid and Interface Science, 2014, 424, 104-112.	9.4	18
54	Base-Catalyzed Reactions in NH3-Enriched Near-Critical Water. Industrial & Engineering Chemistry Research, 2006, 45, 4145-4149.	3.7	17

#	Article	IF	CITATIONS
55	Catalytic Fast Pyrolysis of Rice Straw to Aromatics over Hierarchical HZSM-5 Treated with Different Organosilanes. Energy & Fuels, 2019, 33, 307-312.	5.1	17
56	New Insights into the NiO Catalytic Mechanism on the Conversion of Fructose to Methyl Lactate. Catalysis Communications, 2019, 119, 46-50.	3.3	17
57	Acid-responsive intracellular doxorubicin release from click chemistry functionalized mesoporous silica nanoparticles. RSC Advances, 2015, 5, 30640-30646.	3.6	16
58	Hydrothermal Conversion of Cd-Enriched Rice Straw and Cu-Enriched <i>Elsholtzia splendens</i> with the Aims of Harmless Treatment and Resource Reuse. Industrial & Engineering Chemistry Research, 2018, 57, 15683-15689.	3.7	16
59	Encapsulation of CuO nanoparticles within silicalite-1 as a regenerative catalyst for transfer hydrogenation of furfural. IScience, 2021, 24, 102884.	4.1	15
60	Synthesis of Composition-Tunable Syngas from Efficiently Electrochemical Conversion of CO ₂ over AuCu/CNT Bimetallic Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 15425-15431.	3.7	14
61	Heterogeneous Nonâ€noble Catalyst for Highly Selective Production of Linear αâ€Olefins from Fatty Acids: A Discovery of NiFe/C. ChemSusChem, 2020, 13, 4922-4928.	6.8	14
62	One-Pot Tandem Dehydration–Hydrogenation of Xylose with Formic Acid over Co Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 2754-2760.	3.7	14
63	lsobaric vapor–liquid equilibrium for water+acetic acid+1-butyl-3- methylimidazolium dibutylphosphate at 101.32kPa. Fluid Phase Equilibria, 2014, 363, 220-227.	2.5	13
64	Controllable synthesis of SiO ₂ nanoparticles: effects of ammonia and tetraethyl orthosilicate concentration. Micro and Nano Letters, 2016, 11, 885-889.	1.3	13
65	Adsorption of berberine hydrochloride onto mesoporous carbons with tunable pore size. RSC Advances, 2016, 6, 28219-28228.	3.6	13
66	Simultaneous Conversion of C ₅ and C ₆ Sugars into Methyl Levulinate with the Addition of 1,3,5â€Trioxane. ChemSusChem, 2019, 12, 4400-4404.	6.8	13
67	Enhancement of Catalytic Activity by γ-NiOOH for the Production of Methyl Lactate from Sugars in Near-Critical Methanol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 3659-3665.	3.7	13
68	Hydrothermal Decarboxylation of Pentafluorobenzoic Acid and Quinolinic Acid. Industrial & Engineering Chemistry Research, 2009, 48, 10467-10471.	3.7	12
69	Separation and Determination of Asiaticoside, Asiaticoside-B and Madecassoside in <i>Centella asiatica</i> Total Triterpenoid Saponins by HPLC. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1891-1900.	1.0	12
70	Optimizing the Aromatic Yield via Catalytic Fast Co-pyrolysis of Rice Straw and Waste Oil over HZSM-5 Catalysts. Energy & Fuels, 2019, 33, 4389-4394.	5.1	12
71	Highly Efficient Production of 5-Methoxymethylfurfural from Fructose in Dimethyl Sulfoxide/Amberlyst-15 Catalytic System. Industrial & Engineering Chemistry Research, 2020, 59, 4905-4911.	3.7	10
72	Simultaneous Catalytic Conversion of C6 and C5 Sugars to Methyl Lactate in Near-critical Methanol with Metal Chlorides. BioResources, 2018, 13, .	1.0	8

#	Article	IF	CITATIONS
73	Catalytic Decomposition of Glucose to Levulinic Acid by Synergy of Organic Lewis Acid and BrÃ,nsted Acid in Water. BioResources, 2014, 10, .	1.0	7
74	Beneficial Effect of Water on the Catalytic Conversion of Sugars to Methyl Lactate in Near-Critical Methanol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 12451-12458.	3.7	7
75	SEPARATION AND STRUCTURE DETERMINATION OF CENTELLASAPONIN A AND ITS ISOMER ASIATICOSIDE FROM <i>CENTELLA ASIATICA</i> TOTAL TRITERPENOID SAPONINS. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 1654-1663.	1.0	6
76	Characterization of polyethermethylsiloxanes using ultra-high performance liquid chromatography-electrospray ionization and time-of-flight mass spectrometry. Analytica Chimica Acta, 2019, 1082, 194-201.	5.4	5
77	Highly selective one-pot production of 2,5-furandimethanol from saccharides. Green Chemistry, 2022, 24, 4935-4940.	9.0	5
78	A convenient synthesis of novel 1,3,4â€triarylâ€3,4â€dihydropyrimidinâ€2(1 <i>H</i>)â€ones by cyclization of aromatic isocyanates with βâ€arylaminoâ€1â€phenylpropanâ€1â€ones. Journal of Heterocyclic Chemistry, 2008, 1095-1098.	4556	3
79	Hydrolysis Kinetics of 2-Pyridinecarboxamide, 3-Pyridinecarboxamide and 4-Pyridinecarboxamide in High-Temperature Water. Chinese Journal of Chemical Engineering, 2014, 22, 1005-1008.	3.5	3
80	One-Pot Production of 2,5-Furandimethanol from Fructose Co-catalyzed with Formic Acid and Heterogeneous Co Catalysts. Energy & Fuels, 2022, 36, 480-487.	5.1	3
81	Hydrolysis kinetics of 2â€cyanopyridine, 3â€cyanopyridine, and 4â€cyanopyridine in highâ€temperature water. International Journal of Chemical Kinetics, 2012, 44, 641-648.	1.6	2
82	Crystallization of Asiaticoside from Total Triterpenoid Saponins of <i>Centella Asiatica</i> in a Methanol + Water System. Industrial & Engineering Chemistry Research, 2014, 53, 14022-14027.	3.7	1
83	Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with CoO@silicalite-1. Catalysts, 2022, 12, 442.	3.5	1
84	Poly(ethylene oxide) helical conformation and alkali metal cation selectivity studied using electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8719.	1.5	0
85	Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with Coo@Silicalite-1. SSRN Electronic Journal, 0, , .	0.4	0