Zhongwang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5404981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44, 2792-2801.	4.0	308
2	A Global Drought and Flood Catalogue from 1950 to 2016. Bulletin of the American Meteorological Society, 2020, 101, E508-E535.	3.3	98
3	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	12.9	73
4	Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agricultural and Forest Meteorology, 2018, 263, 346-361.	4.8	67
5	Evapotranspiration partitioning for three agro-ecosystems with contrasting moisture conditions: a comparison of an isotope method and a two-source model calculation. Agricultural and Forest Meteorology, 2018, 252, 296-310.	4.8	65
6	Partitioning of evapotranspiration using highâ€frequency water vapor isotopic measurement over a rice paddy field. Water Resources Research, 2015, 51, 3716-3729.	4.2	63
7	Contrasting Influences of Human Activities on Hydrological Drought Regimes Over China Based on Highâ€Resolution Simulations. Water Resources Research, 2020, 56, e2019WR025843.	4.2	62
8	Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia. Earth and Planetary Science Letters, 2018, 488, 181-192.	4.4	58
9	Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agricultural and Forest Meteorology, 2015, 208, 16-31.	4.8	49
10	Determinants of the ratio of actual to potential evapotranspiration. Global Change Biology, 2019, 25, 1326-1343.	9.5	39
11	Response of Surface Temperature to Afforestation in the Kubuqi Desert, Inner Mongolia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 948-964.	3.3	36
12	Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. Journal of Hydrology, 2016, 533, 91-102.	5.4	34
13	A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Scientific Data, 2019, 6, 180302.	5.3	31
14	Quantifying the Controls on Evapotranspiration Partitioning in the Highest Alpine Meadow Ecosystem. Water Resources Research, 2020, 56, e2019WR024815.	4.2	28
15	Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nature Communications, 2021, 12, 1519.	12.8	27
16	Determinants of the Asymmetric Parameter in the Generalized Complementary Principle of Evaporation. Water Resources Research, 2020, 56, e2019WR026570.	4.2	25
17	Climate-informed hydrologic modeling and policy typology to guide managed aquifer recharge. Science Advances, 2021, 7, .	10.3	24
18	A framework for quantifying hydrologic effects of soil structure across scales. Communications Earth & Environment, 2021, 2, .	6.8	24

ZHONGWANG WEI

#	Article	IF	CITATIONS
19	Dynamical effects of plastic mulch on evapotranspiration partitioning in a mulched agriculture ecosystem: Measurement with numerical modeling. Agricultural and Forest Meteorology, 2019, 268, 98-108.	4.8	19
20	Evaporation from Lake Kasumigaura: annual totals and variability in time and space. Hydrological Research Letters, 2014, 8, 103-107.	0.5	19
21	Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 2016, 160, 319-346.	2.3	18
22	The utility of near-surface water vapor deuterium excess as an indicator of atmospheric moisture source. Journal of Hydrology, 2019, 577, 123923.	5.4	15
23	Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions. Water Resources Research, 2020, 56, e2019WR025963.	4.2	15
24	Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?. Hydrology and Earth System Sciences, 2021, 25, 6151-6172.	4.9	14
25	Attribution of the land surface temperature response to land-use conversions from bare land. Global and Planetary Change, 2020, 193, 103268.	3.5	13
26	Global assessment of partitioning transpiration from evapotranspiration based on satellite solar-induced chlorophyll fluorescence data. Journal of Hydrology, 2022, 612, 128044.	5.4	13
27	Influences of Extreme Weather Conditions on the Carbon Cycles of Bamboo and Tea Ecosystems. Forests, 2018, 9, 629.	2.1	12
28	Influences of Root Hydraulic Redistribution on N ₂ O Emissions at AmeriFlux Sites. Geophysical Research Letters, 2018, 45, 5135-5143.	4.0	12
29	Development of Hierarchical Ensemble Model and Estimates of Soil Water Retention With Global Coverage. Geophysical Research Letters, 2020, 47, e2020GL088819.	4.0	10
30	A Meta-Analysis of Open-Path Eddy Covariance Observations of Apparent CO2 Flux in Cold Conditions in FLUXNET. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2475-2487.	1.3	9
31	Impact of Large-Scale Afforestation on Surface Temperature: A Case Study in the Kubuqi Desert, Inner Mongolia Based on the WRF Model. Forests, 2019, 10, 368.	2.1	9
32	Evapotranspiration Characteristics Distinct to Mangrove Ecosystems Are Revealed by Multiple‣ite Observations and a Modified Two‣ource Model. Water Resources Research, 2019, 55, 11250-11273.	4.2	9
33	Identification of uncertainty sources in quasi-global discharge and inundation simulations using satellite-based precipitation products. Journal of Hydrology, 2020, 589, 125180.	5.4	9
34	A multiple time scale modeling investigation of leaf water isotope enrichment in a temperate grassland ecosystem. Ecological Research, 2018, 33, 901-915.	1.5	8
35	Spatial patterns of ENSO's interannual influences on lilacs vary with time and periodicity. Atmospheric Research, 2017, 186, 95-106.	4.1	7
36	ISOLESC: A Coupled Isotope‣SM‣ESâ€Cloud Modeling System to Investigate the Water Budget in the Atmospheric Boundary Layer. Journal of Advances in Modeling Earth Systems, 2018, 10, 2589-2617.	3.8	6

ZHONGWANG WEI

#	ARTICLE	IF	CITATIONS
37	Impacts of Continuously Increasing Urbanization Ratios on Warming Rates and Temperature Extremes Observed Over the Beijing Area. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034536.	3.3	6
38	Transpiration and evaporation of grassland using land surface modelling. Hydrological Processes, 2020, 34, 3656-3668.	2.6	5
39	New Representation of Plant Hydraulics Improves the Estimates of Transpiration in Land Surface Model. Forests, 2021, 12, 722.	2.1	3
40	Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder Networks. Journal of Hydrometeorology, 2022, , .	1.9	3
41	A Catchmentâ€Based Hierarchical Spatial Tessellation Approach to a Better Representation of Land Heterogeneity for Hyperâ€Resolution Land Surface Modeling. Water Resources Research, 2022, 58, .	4.2	3
42	Characterizing the groundwater storage–discharge relationship of small catchments in China. Hydrology Research, 2022, 53, 782-794.	2.7	3
43	Determining the Isotopic Composition of Surface Water Vapor Flux From Highâ€Frequency Observations Using Fluxâ€Gradient and Keeling Plot Methods. Earth and Space Science, 2021, 8, e2020EA001304.	2.6	2
44	Reducing Solar Radiation Forcing Uncertainty and Its Impact on Surface Energy and Water Fluxes. Journal of Hydrometeorology, 2021, 22, 813-829.	1.9	2
45	Causality-Structured Deep Learning for Soil Moisture Predictions. Journal of Hydrometeorology, 2022, 23, 1315-1331.	1.9	2
46	Modeling Investigation of Diurnal Variations in Water Flux and Its Components with Stable Isotopic Tracers. Atmosphere, 2019, 10, 403.	2.3	1
47	Plant drought tolerance trait is the key parameter in improving the modeling of terrestrial transpiration in arid and semi-arid regions. Atmospheric and Oceanic Science Letters, 2022, 15, 100139.	1.3	1

INVESTIGATING VEGETATION-ATMOSPHERE WATER EXCHANGE BY USING HIGH FREQUENCY SPECTROSCOPY VAPOR ISOTOPE OBSERVATIONS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic) Tj ETQq0 0 0 rgBT / @værlock 100 Tf 50 29 48