Leticia Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/54031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 2019, 15, 5925-5964.	5.3	661
2	SHARC: <i>ab Initio</i> Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. Journal of Chemical Theory and Computation, 2011, 7, 1253-1258.	5.3	424
3	Deciphering the Reaction Dynamics Underlying Optimal Control Laser Fields. Science, 2003, 299, 536-539.	12.6	388
4	Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem, 2012, 13, 28-51.	2.1	344
5	Nonadiabatic dynamics: The SHARC approach. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1370.	14.6	274
6	A general method to describe intersystem crossing dynamics in trajectory surface hopping. International Journal of Quantum Chemistry, 2015, 115, 1215-1231.	2.0	228
7	The IPEA dilemma in CASPT2. Chemical Science, 2017, 8, 1482-1499.	7.4	194
8	Photochemical Fate: The First Step Determines Efficiency of H ₂ Formation with a Supramolecular Photocatalyst. Angewandte Chemie - International Edition, 2010, 49, 3981-3984.	13.8	162
9	The origin of efficient triplet state population in sulfur-substituted nucleobases. Nature Communications, 2016, 7, 13077.	12.8	149
10	Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine. Journal of Physical Chemistry Letters, 2012, 3, 3090-3095.	4.6	146
11	Efficient and Flexible Computation of Many-Electron Wave Function Overlaps. Journal of Chemical Theory and Computation, 2016, 12, 1207-1219.	5.3	145
12	Phenyl-1 <i>H</i> -[1,2,3]triazoles as New Cyclometalating Ligands for Iridium(III) Complexes. Organometallics, 2009, 28, 5478-5488.	2.3	142
13	Machine learning enables long time scale molecular photodynamics simulations. Chemical Science, 2019, 10, 8100-8107.	7.4	140
14	High-levelab initio versus DFT calculations on (H2O2)2 and H2O2-H2O complexes as prototypes of multiple hydrogen bond systems. Journal of Computational Chemistry, 1997, 18, 1124-1135.	3.3	127
15	High level ab initio and density functional theory studies on methanol–water dimers and cyclic methanol(water)2 trimer. Journal of Chemical Physics, 1998, 109, 139-150.	3.0	126
16	Cooperative effects in water trimers. The performance of density functional approaches. Computational and Theoretical Chemistry, 1996, 371, 1-10.	1.5	117
17	A Heteroleptic Bis(tridentate) Ruthenium(II) Complex of a Clickâ€Derived Abnormal Carbene Pincer Ligand with Potential for Photosensitzer Application. Chemistry - A European Journal, 2011, 17, 5494-5498.	3.3	117
18	Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture. Journal of Physical Chemistry Letters, 2016, 7, 1978-1983.	4.6	117

#	Article	IF	CITATIONS
19	An Asymmetric Redox Arylation: Chirality Transfer from Sulfur to Carbon through a Sulfonium [3,3]â€6igmatropic Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 2212-2215.	13.8	115
20	Chemo- and Stereoselective Transition-Metal-Free Amination of Amides with Azides. Journal of the American Chemical Society, 2016, 138, 8348-8351.	13.7	109
21	Quantitative wave function analysis for excited states of transition metal complexes. Coordination Chemistry Reviews, 2018, 361, 74-97.	18.8	109
22	Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in [Ru(bpy) ₃] ²⁺ . Journal of Physical Chemistry Letters, 2017, 8, 3840-3845.	4.6	108
23	Selective preparation of enantiomers by laser pulses: quantum model simulation for H2POSH. Chemical Physics Letters, 1999, 306, 1-8.	2.6	101
24	Very strong hydrogen bonds in neutral molecules: The phosphinic acid dimers. Journal of Chemical Physics, 1998, 109, 2685-2693.	3.0	100
25	Metal-free intermolecular formal cycloadditions enable an orthogonal access to nitrogen heterocycles. Nature Communications, 2016, 7, 10914.	12.8	96
26	High-Level ab Initio Calculations on the Intramolecular Hydrogen Bond in Thiomalonaldehyde. Journal of Physical Chemistry A, 1997, 101, 9710-9719.	2.5	95
27	Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coordination Chemistry Reviews, 2012, 256, 1479-1508.	18.8	95
28	Ultrafast intersystem crossing dynamics in uracil unravelled by <i>ab initio</i> molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 24423-24436.	2.8	95
29	Communication: GAIMS—Generalized <i>Ab Initio</i> Multiple Spawning for both internal conversion and intersystem crossing processes. Journal of Chemical Physics, 2016, 144, 101102.	3.0	93
30	Density functional theory study on ethanol dimers and cyclic ethanol trimers. Journal of Chemical Physics, 1999, 111, 3855-3861.	3.0	92
31	Molecular Photochemistry: Recent Developments in Theory. Angewandte Chemie - International Edition, 2020, 59, 16832-16846.	13.8	91
32	Benzophenone Ultrafast Triplet Population: Revisiting the Kinetic Model by Surface-Hopping Dynamics. Journal of Physical Chemistry Letters, 2016, 7, 622-626.	4.6	89
33	Singlet and Triplet Excitedâ€6tate Dynamics Study of the Keto and Enol Tautomers of Cytosine. ChemPhysChem, 2013, 14, 2920-2931.	2.1	86
34	Highly efficient surface hopping dynamics using a linear vibronic coupling model. Physical Chemistry Chemical Physics, 2019, 21, 57-69.	2.8	81
35	Structure–Property Relationship of Red―and Greenâ€Emitting Iridium(III) Complexes with Respect to Their Temperature and Oxygen Sensitivity. European Journal of Inorganic Chemistry, 2010, 2010, 4875-4885.	2.0	80
36	Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis. Chemical Science, 2017, 8, 5682-5691.	7.4	79

#	Article	IF	CITATIONS
37	A Timeâ€Dependent Picture of the Ultrafast Deactivation of <i>keto</i> â€Cytosine Including Threeâ€State Conical Intersections. ChemPhysChem, 2010, 11, 3617-3624.	2.1	78
38	Analysis and control of laser induced fragmentation processes in CpMn(CO)3. Chemical Physics, 2001, 267, 247-260.	1.9	77
39	An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine. Chemical Communications, 2012, 48, 2134.	4.1	76
40	A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution. Journal of the American Chemical Society, 2020, 142, 7947-7955.	13.7	74
41	Real-Time Tracking of Phytochrome's Orientational Changes During Pr Photoisomerization. Journal of the American Chemical Society, 2012, 134, 1408-1411.	13.7	72
42	Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives. Journal of the American Chemical Society, 2015, 137, 4368-4381.	13.7	72
43	A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil. Journal of Physical Chemistry A, 2015, 119, 9524-9533.	2.5	69
44	Cyclobutane Thymine Photodimerization Mechanism Revealed by Nonadiabatic Molecular Dynamics. Journal of the American Chemical Society, 2016, 138, 15911-15916.	13.7	69
45	Non-adiabatic and intersystem crossing dynamics in SO ₂ . II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations. Journal of Chemical Physics, 2014, 140, 204302.	3.0	68
46	4-Methoxy-1,3-thiazole based donor-acceptor dyes: Characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dyes and Pigments, 2012, 94, 512-524.	3.7	67
47	Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry. Physical Chemistry Chemical Physics, 2016, 18, 20168-20176.	2.8	65
48	Unified Approach to the Chemoselective α-Functionalization of Amides with Heteroatom Nucleophiles. Journal of the American Chemical Society, 2019, 141, 18437-18443.	13.7	65
49	Ultrafast photoinduced dissipative hydrogen switching dynamics in thioacetylacetone. Physical Chemistry Chemical Physics, 1999, 1, 1249-1257.	2.8	63
50	Ruthenium(II) Photosensitizers of Tridentate Clickâ€Đerived Cyclometalating Ligands: A Joint Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 4010-4025.	3.3	61
51	N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H-[1,2,3]Triazol-4-yl)pyridines and Their Ruthenium(II) Complexes. Journal of Organic Chemistry, 2010, 75, 4025-4038.	3.2	60
52	Ground- and Excited-State Surfaces for the [2+2]-Photocycloaddition of α,β-Enones to Alkenes. Journal of the American Chemical Society, 2000, 122, 5866-5876.	13.7	59
53	Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields. Faraday Discussions, 2011, 153, 261.	3.2	59
54	Theoretical Spectroscopy and Photodynamics of a Ruthenium Nitrosyl Complex. Inorganic Chemistry, 2014, 53, 6415-6426.	4.0	59

#	Article	IF	CITATIONS
55	Orbital entanglement and CASSCF analysis of the Ru–NO bond in a Ruthenium nitrosyl complex. Physical Chemistry Chemical Physics, 2015, 17, 14383-14392.	2.8	58
56	2-Thiouracil intersystem crossing photodynamics studied by wavelength-dependent photoelectron and transient absorption spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 19756-19766.	2.8	58
57	Spectroscopy of Ru(II) polypyridyl complexes used as intercalators in DNA: Towards a theoretical study of the light switch effect. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 310-320.	3.9	57
58	Thymine relaxation after UV irradiation: the role of tautomerization and πσ* states. Physical Chemistry Chemical Physics, 2009, 11, 3927.	2.8	56
59	Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angewandte Chemie - International Edition, 2015, 54, 4375-4378.	13.8	56
60	Quantum control of molecular handedness in a randomly oriented racemic mixture using three polarization components of electric fields. Journal of Chemical Physics, 2002, 116, 8799-8802.	3.0	55
61	Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coordination Chemistry Reviews, 2015, 304-305, 146-165.	18.8	55
62	Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Physical Chemistry Chemical Physics, 2011, 13, 15580.	2.8	54
63	RASPT2/RASSCF vs Range-Separated/Hybrid DFT Methods: Assessing the Excited States of a Ru(II)bipyridyl Complex. Journal of Chemical Theory and Computation, 2012, 8, 203-213.	5.3	53
64	Mechanism of Ultrafast Intersystem Crossing in 2â€Nitronaphthalene. Chemistry - A European Journal, 2018, 24, 5379-5387.	3.3	50
65	Strong Influence of Decoherence Corrections and Momentum Rescaling in Surface Hopping Dynamics of Transition Metal Complexes. Journal of Chemical Theory and Computation, 2019, 15, 5031-5045.	5.3	50
66	Title is missing!. Journal of Computational Chemistry, 1997, 18, 1124.	3.3	49
67	Substituent Effects on the Strength of the Intramolecular Hydrogen Bond of Thiomalonaldehyde. Journal of Organic Chemistry, 1999, 64, 2314-2321.	3.2	48
68	From a Racemate to a Pure Enantiomer by Laser Pulses: Quantum Model Simulations for H2POSH. Angewandte Chemie - International Edition, 2000, 39, 4586-4588.	13.8	48
69	Separation of enantiomers by ultraviolet laser pulses in H2POSH: π pulses versus adiabatic transitions. Journal of Chemical Physics, 2001, 115, 2519-2529.	3.0	48
70	Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex. Journal of Chemical Physics, 2014, 140, 174103.	3.0	48
71	Simulation of the resonance Raman intensities of a ruthenium–palladium photocatalyst by time dependent density functional theory. Physical Chemistry Chemical Physics, 2010, 12, 14812.	2.8	47
72	Computational Photophysics in the Presence of an Environment. Annual Review of Physical Chemistry, 2018, 69, 473-497.	10.8	47

#	Article	IF	CITATIONS
73	The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts. Molecules, 2020, 25, 157.	3.8	47
74	Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil. Journal of Chemical Physics, 2016, 144, 074303.	3.0	46
75	A CASSCF/CASPT2 and TD-DFT Study of the Low-Lying Excited States of Î-5-CpMn(CO)3. Journal of Physical Chemistry A, 2001, 105, 184-189.	2.5	44
76	Control of molecular handedness using pump-dump laser pulses. Journal of Chemical Physics, 2002, 116, 2433-2438.	3.0	43
77	Quantum ignition of intramolecular rotation by means of IR+UV laser pulses. Chemical Physics Letters, 2004, 386, 248-253.	2.6	43
78	Nuclear Magnetic Resonance and ab Initio Studies of Small Complexes Formed between Water and Pyridine Derivatives in Solid and Liquid Phases. Journal of Physical Chemistry A, 2007, 111, 6084-6093.	2.5	43
79	Synthesis and Catalytic Reactivity of Bis(alkylzinc)-hydride-di(2-pyridylmethyl)amides. Organometallics, 2010, 29, 3098-3108.	2.3	43
80	Excitation of Nucleobases from a Computational Perspective II: Dynamics. Topics in Current Chemistry, 2014, 355, 99-153.	4.0	43
81	Mixed Quantum-Classical Dynamics in the Adiabatic Representation To Simulate Molecules Driven by Strong Laser Pulses. Journal of Physical Chemistry A, 2012, 116, 2800-2807.	2.5	42
82	Molecular Dynamics Simulations of Binding Modes between Methylene Blue and DNA with Alternating GC and AT Sequences. Biochemistry, 2014, 53, 2391-2412.	2.5	42
83	Direct Regioselective Synthesis of Tetrazolium Salts by Activation of Secondary Amides under Mild Conditions. Organic Letters, 2017, 19, 2662-2665.	4.6	42
84	The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. Journal of Chemical Physics, 2020, 152, 134110.	3.0	42
85	Design of acidochromic dyes for facile preparation of pH sensor layers. Analytical and Bioanalytical Chemistry, 2008, 392, 1411-1418.	3.7	41
86	Excited-states of a rhenium carbonyl diimine complex: solvation models, spin–orbit coupling, and vibrational sampling effects. Physical Chemistry Chemical Physics, 2017, 19, 27240-27250.	2.8	40
87	Detailed Wave Function Analysis for Multireference Methods: Implementation in the <scp>Molcas</scp> Program Package and Applications to Tetracene. Journal of Chemical Theory and Computation, 2017, 13, 5343-5353.	5.3	40
88	Chiral Molecular Motors Ignited by Femtosecond Pumpâ^'Dump Laser Pulses. Journal of Physical Chemistry B, 2004, 108, 4916-4921.	2.6	39
89	Assessing Excited State Energy Gaps with Time-Dependent Density Functional Theory on Ru(II) Complexes. Journal of Chemical Theory and Computation, 2017, 13, 4123-4145.	5.3	39
90	Structural Control of Photoinduced Dynamics in 4 <i>H</i> -Imidazole-Ruthenium Dyes. Journal of Physical Chemistry C, 2012, 116, 25664-25676.	3.1	38

#	Article	IF	CITATIONS
91	An Assessment of RASSCF and TDDFT Energies and Gradients on an Organic Donor–Acceptor Dye Assisted by Resonance Raman Spectroscopy. Journal of Chemical Theory and Computation, 2013, 9, 543-554.	5.3	38
92	Asymmetrische Redoxarylierung: ChiralitÃætransfer von Schwefel zu Kohlenstoff durch sigmatrope Sulfoniumâ€{3,3]â€Umlagerung. Angewandte Chemie, 2017, 129, 2248-2252.	2.0	38
93	Exploring wavepacket dynamics behind strong-field momentum-dependent photodissociation in CH2BrI+. Physical Chemistry Chemical Physics, 2010, 12, 14203.	2.8	37
94	A Siliconâ€Heteroaromatic System as Photosensitizer for Lightâ€Driven Hydrogen Production by Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2013, 2013, 4466-4472.	2.0	36
95	Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules. Physical Chemistry Chemical Physics, 2014, 16, 9249-9258.	2.8	36
96	Ab initio molecular dynamics of thiophene: the interplay of internal conversion and intersystem crossing. Physical Chemistry Chemical Physics, 2017, 19, 25662-25670.	2.8	36
97	Mechanistic Pathways in Amide Activation: Flexible Synthesis of Oxazoles and Imidazoles. Organic Letters, 2017, 19, 3815-3818.	4.6	36
98	Active and silent chromophore isoforms for phytochrome Pr photoisomerization: An alternative evolutionary strategy to optimize photoreaction quantum yields. Structural Dynamics, 2014, 1, 014701.	2.3	35
99	Unconventional two-step spin relaxation dynamics of [Re(CO) ₃ (im)(phen)] ⁺ in aqueous solution. Chemical Science, 2019, 10, 10405-10411.	7.4	35
100	Quantum model simulations of symmetry breaking and control of bond selective dissociation of FHFâ^' using IR+UV laser pulses. Journal of Chemical Physics, 2004, 120, 8002-8014.	3.0	33
101	The Chromophore Structure of the Cyanobacterial Phytochrome Cph1 As Predicted by Time-Dependent Density Functional Theory. Journal of Physical Chemistry B, 2008, 112, 16253-16256.	2.6	33
102	Ultrafast irreversible phototautomerization of o-nitrobenzaldehyde. Chemical Communications, 2011, 47, 6383.	4.1	33
103	Control of Nuclear Dynamics with Strong Ultrashort Laser Pulses. Journal of Physical Chemistry A, 2012, 116, 11434-11440.	2.5	33
104	Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods. Journal of Chemical Physics, 2014, 141, 074105.	3.0	33
105	Metalâ€Free <i>meta</i> â€Selective Alkyne Oxyarylation with Pyridine <i>N</i> â€Oxides: Rapid Assembly of Metyrapone Analogues. Angewandte Chemie - International Edition, 2016, 55, 15424-15428.	13.8	33
106	Linkage Photoisomerization Mechanism in a Photochromic Ruthenium Nitrosyl Complex: New Insights from an MS-CASPT2 Study. Journal of Chemical Theory and Computation, 2017, 13, 6120-6130.	5.3	33
107	Interstate vibronic coupling constants between electronic excited states for complex molecules. Journal of Chemical Physics, 2018, 148, 124119.	3.0	33
108	Structure and bonding of Ag(I)-DNA base complexes and Ag(I)-adenine-cytosine mispairs: An ab Initio study. Journal of Computational Chemistry, 2007, 28, 2299-2308.	3.3	32

#	Article	IF	CITATIONS
109	Divergent ynamide reactivity in the presence of azides – an experimental and computational study. Chemical Science, 2016, 7, 6032-6040.	7.4	32
110	Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method. Journal of Chemical Physics, 2017, 147, 184109.	3.0	32
111	The DNA nucleobase thymine in motion – Intersystem crossing simulated with surface hopping. Chemical Physics, 2017, 482, 9-15.	1.9	32
112	Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazines. Scientific Reports, 2018, 8, 17273.	3.3	32
113	Surface Hopping Dynamics on Vibronic Coupling Models. Accounts of Chemical Research, 2021, 54, 3760-3771.	15.6	32
114	Ab initio molecular dynamics relaxation and intersystem crossing mechanisms of 5-azacytosine. Physical Chemistry Chemical Physics, 2017, 19, 5888-5894.	2.8	31
115	Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine. Journal of Physical Chemistry B, 2017, 121, 5187-5196.	2.6	31
116	Electronic States of <i>o</i> -Nitrobenzaldehyde: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 5046-5053.	2.5	30
117	A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. Journal of Physical Chemistry C, 2012, 116, 19968-19977.	3.1	30
118	A redox-neutral synthesis of ketones by coupling of alkenes and amides. Nature Communications, 2019, 10, 2327.	12.8	30
119	The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. Journal of Chemical Theory and Computation, 2019, 15, 3470-3480.	5.3	30
120	The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. Jacs Au, 2021, 1, 1116-1140.	7.9	30
121	Asymmetric laser excitation in chiral molecules: quantum simulations for a proposed experiment. Chemical Physics Letters, 2003, 372, 242-248.	2.6	29
122	A theoretical anharmonic study of the infrared absorption spectra of FHFâ^', FDFâ^', OHFâ^', and ODFâ^' anions. Journal of Chemical Physics, 2006, 124, 174308.	3.0	29
123	Time-Dependent DFT on Phytochrome Chromophores: A Way to the Right Conformer. Journal of Physical Chemistry Letters, 2010, 1, 796-801.	4.6	29
124	Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. Journal of Chemical Theory and Computation, 2018, 14, 6139-6148.	5.3	29
125	Finite-temperature Wigner phase-space sampling and temperature effects on the excited-state dynamics of 2-nitronaphthalene. Physical Chemistry Chemical Physics, 2019, 21, 13906-13915.	2.8	29
126	αâ€Functionalisation of Ketones Through Metalâ€Free Electrophilic Activation. Angewandte Chemie - International Edition, 2020, 59, 20935-20939.	13.8	29

#	Article	IF	CITATIONS
127	Influence of Multiple Protonation on the Initial Excitation in a Black Dye. Journal of Physical Chemistry C, 2011, 115, 24004-24012.	3.1	28
128	Unusual mechanisms in Claisen rearrangements: an ionic fragmentation leading to a <i>meta</i> -selective rearrangement. Chemical Science, 2018, 9, 4124-4131.	7.4	28
129	Novel Molecular-Dynamics-Based Protocols for Phase Space Sampling in Complex Systems. Frontiers in Chemistry, 2018, 6, 495.	3.6	28
130	Simulated and Experimental Time-Resolved Photoelectron Spectra of the Intersystem Crossing Dynamics in 2-Thiouracil. Molecules, 2018, 23, 2836.	3.8	28
131	Spontaneous Self-Ionization in the Gas Phase: A Theoretical Prediction. ChemPhysChem, 2001, 2, 465-467.	2.1	27
132	A Two-Dimensional Wavepacket Study of the Nonadiabatic Dynamics of CH2BrCl. Journal of Physical Chemistry A, 2008, 112, 5573-5581.	2.5	27
133	Direct Observation of Temperature-Dependent Excited-State Equilibrium in Dinuclear Ruthenium Terpyridine Complexes Bearing Electron-Poor Bridging Ligands. Journal of Physical Chemistry C, 2011, 115, 12677-12688.	3.1	27
134	Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra. Scientific Reports, 2016, 6, 35522.	3.3	27
135	Photochemistry of CH2BrCl:Â An ab Initio and Dynamical Study. Journal of Physical Chemistry A, 2002, 106, 11150-11161.	2.5	26
136	Spectroscopic Properties of Azobenzene-Based pH Indicator Dyes: A Quantum Chemical and Experimental Study. Journal of Chemical Theory and Computation, 2011, 7, 1062-1072.	5.3	26
137	Arylamineâ€Modified Thiazoles as Donor–Acceptor Dyes: Quantum Chemical Evaluation of the Chargeâ€Transfer Process and Testing as Ligands in Ruthenium(II) Complexes. European Journal of Organic Chemistry, 2012, 2012, 5231-5247.	2.4	26
138	Mechanism Elucidation of the <i>cis–trans</i> Isomerization of an Azole Ruthenium–Nitrosyl Complex and Its Osmium Counterpart. Inorganic Chemistry, 2013, 52, 6260-6272.	4.0	26
139	Sequential Proton-Coupled Electron Transfer Mediates Excited-State Deactivation of a Eumelanin Building Block. Journal of Physical Chemistry Letters, 2017, 8, 1004-1008.	4.6	26
140	Selective preparation of enantiomers by laser pulses: From optimal control to specific pump and dump transitions. Journal of Chemical Physics, 2000, 113, 11134-11142.	3.0	25
141	Annulated Dinuclear Metal-Free and Zn(II) Phthalocyanines: Photophysical Studies and Quantum Mechanical Calculations. Journal of Physical Chemistry B, 2008, 112, 8466-8476.	2.6	25
142	Ultrafast non-adiabatic laser-induced photodissociation dynamics of CpMn(CO)3. An ab initio quantum chemical and dynamical study. Physical Chemistry Chemical Physics, 2003, 5, 87-96.	2.8	24
143	Creation of multihole molecular wave packets via strong-field ionization. Physical Review A, 2010, 82, .	2.5	24
144	Quenching of Charge Transfer in Nitrobenzene Induced by Vibrational Motion. Journal of Physical Chemistry Letters, 2015, 6, 3006-3011.	4.6	24

#	Article	IF	CITATIONS
145	Peripheral ligands as electron storage reservoirs and their role in enhancement of photocatalytic hydrogen generation. Chemical Communications, 2016, 52, 9371-9374.	4.1	24
146	Hydrative Aminoxylation of Ynamides: One Reaction, Two Mechanisms. Chemistry - A European Journal, 2018, 24, 2515-2519.	3.3	24
147	From Surface Hopping to Quantum Dynamics and Back. Finding Essential Electronic and Nuclear Degrees of Freedom and Optimal Surface Hopping Parameters. Journal of Physical Chemistry A, 2019, 123, 8321-8332.	2.5	24
148	Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(<scp>iii</scp>) complex II. Elucidating triplet-to-singlet excited-state dynamics. Chemical Science, 2021, 12, 10791-10801.	7.4	24
149	QM/MM Nonadiabatic Dynamics: the SHARC/COBRAMM Approach. Journal of Chemical Theory and Computation, 2021, 17, 4639-4647.	5.3	24
150	N-site de-methylation in pyrimidine bases as studied by low energy electrons and ab initio calculations. Physical Chemistry Chemical Physics, 2013, 15, 11431.	2.8	23
151	Intersystem Crossing and Triplet Dynamics in an Iron(II) N-Heterocyclic Carbene Photosensitizer. Inorganic Chemistry, 2020, 59, 14666-14678.	4.0	23
152	Early Relaxation Dynamics in the Photoswitchable Complex <i>trans</i> â€{RuCl(NO)(py) ₄] ²⁺ . Chemistry - A European Journal, 2020, 26, 11522-11528.	3.3	23
153	Breaking the strong and weak bonds of OHFâ^'using few-cycle IR + UV laser pulses. Physical Chemistry Chemical Physics, 2004, 6, 4071-4073.	2.8	22
154	Biologically inspired molecular machines driven by light. Optimal control of a unidirectional rotor. New Journal of Physics, 2010, 12, 075007.	2.9	22
155	Revealing the Position of the Substrate in Nickel Superoxide Dismutase: A Model Study. Angewandte Chemie - International Edition, 2011, 50, 2946-2950.	13.8	22
156	Mechanistic insight into light-driven molecular rotors: a conformational search in chiral overcrowded alkenes by a pseudo-random approach. Physical Chemistry Chemical Physics, 2010, 12, 12279.	2.8	21
157	Direct Determination of Metal Complexes' Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics. Journal of Physical Chemistry Letters, 2017, 8, 805-811.	4.6	21
158	Challenges in Simulating Light-Induced Processes in DNA. Molecules, 2017, 22, 49.	3.8	21
159	Solvent Effects on Electronically Excited States: QM/Continuum Versus QM/Explicit Models. Journal of Physical Chemistry B, 2018, 122, 2975-2984.	2.6	21
160	Vibrational Sampling and Solvent Effects on the Electronic Structure of the Absorption Spectrum of 2-Nitronaphthalene. Journal of Chemical Theory and Computation, 2018, 14, 3205-3217.	5.3	21
161	The Role of Electronic Triplet States and High‣ying Singlet States in the Deactivation Mechanism of the Parent BODIPY: An ADC(2) and CASPT2 Study. ChemPhotoChem, 2019, 3, 727-738.	3.0	21
162	Excimer Intermediates en Route to Long-Lived Charge-Transfer States in Single-Stranded Adenine DNA as Revealed by Nonadiabatic Dynamics. Journal of Physical Chemistry Letters, 2020, 11, 7483-7488.	4.6	21

#	Article	IF	CITATIONS
163	Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands. Inorganic Chemistry, 2020, 59, 4972-4984.	4.0	21
164	Deep learning study of tyrosine reveals that roaming can lead to photodamage. Nature Chemistry, 2022, 14, 914-919.	13.6	21
165	Enantioselective separation of axial chiral olefins by laser pulses using coupled torsion and pyramidalization motions. Physical Chemistry Chemical Physics, 2003, 5, 3933-3942.	2.8	20
166	Laser control of conical intersections: Quantum model simulations for the averaged loss-gain strategies of fast electronic deactivation in 1,1-difluoroethylene. Journal of Chemical Physics, 2009, 131, 104302.	3.0	20
167	Time-Resolved Insight into the Photosensitized Generation of Singlet Oxygen in Endoperoxides. Journal of Chemical Theory and Computation, 2015, 11, 406-414.	5.3	20
168	A XMS-CASPT2 non-adiabatic dynamics study on pyrrole. Computational and Theoretical Chemistry, 2019, 1155, 38-46.	2.5	20
169	A MS-CASPT2 study of the low-lying electronic excited states of CH2BrCl. Chemical Physics Letters, 2001, 350, 155-164.	2.6	19
170	Optical enantioselection in a random ensemble of unidirectionally oriented chiral olefins. Chemical Physics, 2004, 298, 55-63.	1.9	19
171	On the Location of Conical Intersections in CH2BrCl Using MS-CASPT2 Methods. Journal of Physical Chemistry A, 2006, 110, 10251-10259.	2.5	19
172	Four Plus Four State Degeneracies in the Oâ^'O Photolysis of Aromatic Endoperoxides. Journal of Physical Chemistry Letters, 2010, 1, 1036-1040.	4.6	19
173	A theoretical investigation of the feasibility of Tannor-Rice type control: Application to selective bond breakage in gas-phase dihalomethanes. Journal of Chemical Physics, 2012, 136, 174303.	3.0	19
174	Communication: Unambiguous comparison of many-electron wavefunctions through their overlaps. Journal of Chemical Physics, 2016, 145, 021103.	3.0	19
175	Direct Stereodivergent Olefination of Carbonyl Compounds with Sulfur Ylides. Journal of the American Chemical Society, 2022, 144, 12536-12543.	13.7	19
176	Proton Transfer in Dissociative Protonation Processes. Journal of Physical Chemistry A, 1998, 102, 1356-1364.	2.5	18
177	Selective carbon–carbon bond cleavage of 2,2′-dibromotolane via photolysis of its appropriate (diphosphine)Pt0 complex in the solid state. Dalton Transactions, 2008, , 1979.	3.3	18
178	Impact of Lipid Environment on Photodamage Activation of Methylene Blue. ChemPhotoChem, 2017, 1, 178-182.	3.0	18
179	Implementation of Coherent Switching with Decay of Mixing into the SHARC Program. Journal of Chemical Theory and Computation, 2020, 16, 3464-3475.	5.3	18
180	Excited-State Properties and Relaxation Pathways of Selenium-Substituted Guanine Nucleobase in Aqueous Solution and DNA Duplex. Journal of Physical Chemistry B, 2021, 125, 1778-1789.	2.6	18

#	Article	IF	CITATIONS
181	High-level ab initio calculations on the 1,2-dithioglyoxal/1,2-dithiete isomerism. Chemical Physics Letters, 1996, 263, 407-413.	2.6	17
182	An Ab Initio Study of the Excited States, Isomerization Energy Profiles and Conical Intersections of a Chiral Cyclohexylidene Derivative. Journal of Physical Chemistry A, 2007, 111, 238-243.	2.5	17
183	Identifying the low-lying electronic states of anthracene-9,10-endoperoxide. Chemical Physics Letters, 2008, 452, 67-71.	2.6	17
184	Density functional theory rationalization of the substituent effects in trifluoromethyl-pyridinol derivatives. Tetrahedron, 2009, 65, 232-239.	1.9	17
185	A non-adiabatic quantum-classical dynamics study of the intramolecular excited state hydrogen transfer in ortho-nitrobenzaldehyde. Physical Chemistry Chemical Physics, 2011, 13, 14685.	2.8	17
186	A comparative analysis of the UV/Vis absorption spectra of nitrobenzaldehydes. Physical Chemistry Chemical Physics, 2011, 13, 4269.	2.8	17
187	Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging. Physical Review A, 2011, 84, .	2.5	17
188	The Radiative Decay Rates Tune the Emissive Properties of Ruthenium(II) Polypyridyl Complexes: A Computational Study. Chemistry - an Asian Journal, 2012, 7, 667-671.	3.3	17
189	Intersystem Crossing as a Key Component of the Nonadiabatic Relaxation Dynamics of Bithiophene and Terthiophene. Journal of Chemical Theory and Computation, 2018, 14, 4530-4540.	5.3	17
190	Competing ultrafast photoinduced electron transfer and intersystem crossing of [Re(CO)\$\$_3\$\$(Dmp)(His124)(Trp122)]\$\$^+\$\$ in Pseudomonas aeruginosa azurin: a nonadiabatic dynamics study. Theoretical Chemistry Accounts, 2020, 139, 65.	1.4	17
191	IR Spectrum of FHF [–] and FDF [–] Revisited Using a Spectral Method in Four Dimensions. Journal of Physical Chemistry A, 2012, 116, 11361-11369.	2.5	16
192	Effect of DNA Environment on Electronically Excited States of Methylene Blue Evaluated by a Three-Layered QM/QM/MM ONIOM Scheme. Journal of Chemical Theory and Computation, 2018, 14, 4298-4308.	5.3	16
193	Identification of important normal modes in nonadiabatic dynamics simulations by coherence, correlation, and frequency analyses. Journal of Chemical Physics, 2019, 151, 244115.	3.0	16
194	Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase $Il\hat{I}\pm$ inhibitors. Journal of Biological Inorganic Chemistry, 2020, 25, 451-465.	2.6	16
195	Theoretical investigation of anthraceneâ€9,10â€endoperoxide vertical singlet and triplet excitation spectra. Journal of Computational Chemistry, 2008, 29, 1982-1991.	3.3	15
196	Photochemical behavior of (diphosphine)(η2-tolane)Pt0 complexes. Part A: Experimental considerations in solution and in the solid state. Dalton Transactions, 2010, 39, 9493.	3.3	15
197	Stark Control of a Chiral Fluoroethylene Derivative. Journal of Physical Chemistry A, 2012, 116, 2743-2749.	2.5	15
198	Enhancing the Stability of Photogenerated Benzophenone Triplet Radical Pairs through Supramolecular Assembly. Journal of the American Chemical Society, 2018, 140, 13064-13070.	13.7	15

#	Article	IF	CITATIONS
199	CASPT2 Potential Energy Curves for NO Dissociation in a Ruthenium Nitrosyl Complex. Molecules, 2020, 25, 2613.	3.8	15
200	Photochemical behavior of (bisphosphane)(η2-tolane)PtO complexes. Part B: An insight from DFT calculations. Dalton Transactions, 2010, 39, 9505.	3.3	14
201	A non-adiabatic wavepacket dynamical study of the low energy charge transfer process in the S3++H collision. Chemical Physics, 2012, 400, 165-170.	1.9	14
202	Exciton Localization on Ru-Based Photosensitizers Induced by Binding to Lipid Membranes. Journal of Physical Chemistry Letters, 2018, 9, 683-688.	4.6	14
203	Stepwise photosensitized thymine dimerization mediated by an exciton intermediate. Monatshefte Für Chemie, 2018, 149, 1-9.	1.8	14
204	Curious Case of 2-Selenouracil: Efficient Population of Triplet States and Yet Photostable. Journal of Chemical Theory and Computation, 2019, 15, 3730-3742.	5.3	14
205	Excited-State Dynamics of [Ru(S–Sbpy)(bpy)2]2+ to Form Long-Lived Localized Triplet States. Inorganic Chemistry, 2021, 60, 1672-1682.	4.0	14
206	Kinetic Model for the Thermal Rearrangement of cis- and trans-Pinane. Journal of Physical Chemistry A, 2008, 112, 5885-5892.	2.5	13
207	Substituent effects on the light-induced C–C and C–Br bond activation in (bisphosphine)(η2-tolane)Pt0 complexes. A TD-DFT study. Physical Chemistry Chemical Physics, 2009, 11, 4593.	2.8	13
208	Four-state conical intersections: The nonradiative deactivation funnel connected to O–O homolysis in benzene endoperoxide. Chemical Physics Letters, 2010, 499, 21-25.	2.6	13
209	Molecular oxygen observed by direct photoproduction from carbon dioxide. Physical Review A, 2017, 95, .	2.5	13
210	A Valenceâ€Delocalised Osmium Dimer capable of Dinitrogen Photocleavage: Ab Initio Insights into Its Electronic Structure. Chemistry - A European Journal, 2018, 24, 5112-5123.	3.3	13
211	Hydrogen Bonding Regulates the Rigidity of Liposomeâ€Encapsulated Chlorin Photosensitizers. ChemistryOpen, 2018, 7, 475-483.	1.9	13
212	Spiropyran Meets Guanine Quadruplexes: Isomerization Mechanism and DNA Binding Modes of Quinolizidineâ€Substituted Spiropyran Probes. Chemistry - A European Journal, 2020, 26, 13039-13045.	3.3	13
213	A CASSCF and CASPT2 study of the photochemistry of 1,1- and 1,2-difluoroethylenes. Chemical Physics, 2008, 349, 287-295.	1.9	12
214	On the Light-Driven Isomerization of a Model Asymmetric Molecular Rotor: Conformations and Conical Intersections of 2-Cyclopentylidene-tetrahydrofuran. Journal of Physical Chemistry A, 2010, 114, 9342-9348.	2.5	12
215	Synthesis, properties and quantum chemical evaluation of solvatochromic pyridinium-phenyl-1,3-thiazol-4-olate betaine dyes. Tetrahedron, 2013, 69, 1489-1498.	1.9	12
216	Nonadiabatic Dynamics Simulation Predict Intersystem Crossing in Nitroaromatic Molecules on a Picosecond Time Scale. ChemPhotoChem, 2019, 3, 833-845.	3.0	12

#	Article	IF	CITATIONS
217	Flexibility Enhances Reactivity: Redox Isomerism and Jahn–Teller Effects in a Bioinspired Mn ₄ O ₄ Cubane Water Oxidation Catalyst. ACS Catalysis, 2021, 11, 13320-13329.	11.2	12
218	Strong Ligand Stabilization Based on Ï€â€Extension in a Series of Ruthenium Terpyridine Water Oxidation Catalysts. Chemistry - A European Journal, 2021, 27, 16871-16878.	3.3	12
219	Photoactivity and UV Absorption Spectroscopy of RCo(CO)4 (R = H, CH3) Organometallic Complexes. Journal of Physical Chemistry A, 2007, 111, 4737-4742.	2.5	11
220	Rydberg or Valence? The Longâ€Standing Question in the UV Absorption Spectrum of 1,1′â€Bicyclohexylidene. ChemPhysChem, 2008, 9, 2544-2549.	2.1	11
221	Control of the photodissociation of CH2BrCl using a few-cycle IR driving laser pulse and a UV control pulse. Chemical Physics Letters, 2008, 459, 39-43.	2.6	11
222	Mechanistic studies on the alcoholysis and aminolysis of [(MeZn)2{μ-N(H)tBu}{μ-N(CH2Py)2}]. Journal of Organometallic Chemistry, 2010, 695, 280-290.	1.8	11
223	Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200381.	3.4	11
224	Resolving Femtosecond Solvent Reorganization Dynamics in an Iron Complex by Nonadiabatic Dynamics Simulations. Journal of the American Chemical Society, 2022, 144, 12861-12873.	13.7	11
225	Theory of ultrafast non-resonant multi-photon transitions: basics and application to CpMn(CO)3. Chemical Physics Letters, 2003, 380, 536-541.	2.6	10
226	Sequential Pump-Dump Control of Photoisomerization Competing with Photodissociation of Optical Isomers. Journal of Physical Chemistry A, 2004, 108, 6455-6463.	2.5	10
227	Neutral-to-ionic ZEKE transition dipole couplings beyond Koopmans' picture: Application to femtosecond pump–probe spectroscopy. Chemical Physics, 2005, 314, 143-158.	1.9	10
228	A multi state-CASPT2 vs. TD-DFT study of the electronic excited states of RCo(CO)4 (R=H, CH3) organometallic complexes. Chemical Physics Letters, 2006, 417, 545-549.	2.6	10
229	The electronic excited states of a model organic endoperoxide: A comparison of TD-DFT and ab initio methods. Chemical Physics Letters, 2007, 446, 262-267.	2.6	10
230	Excited state dynamics of a model asymmetric molecular rotor: A five-dimensional study on 2-cyclopentylidene-tetrahydrofuran. Chemical Physics, 2010, 377, 86-95.	1.9	10
231	Correction to "SHARC – <i>Ab Initio</i> Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings―[<i>J. Chem. Theory Comput.</i> 2011 , <i>7</i> , 1253–1258]. Journal of Chemical Theory and Computation, 2012, 8, 374-374.	5.3	10
232	The role of hydrogen bonds in protein–ligand interactions. DFT calculations in 1,3â€dihydrobenzimidazoleâ€2 thione derivatives with glycinamide as model HIV RT inhibitors. International Journal of Quantum Chemistry, 2012, 112, 1786-1795.	2.0	10
233	Unravelling the Quenching Mechanisms of a Luminescent Ru ^{II} Probe for Cu ^{II} . Chemistry - an Asian Journal, 2015, 10, 622-629.	3.3	10
234	Assessing Configurational Sampling in the Quantum Mechanics/Molecular Mechanics Calculation of Temoporfin Absorption Spectrum and Triplet Density of States, Molecules, 2018, 23, 2932	3.8	10

#	Article	IF	CITATIONS
235	Reaction mechanism of nucleoside 2′-deoxyribosyltransferases: free-energy landscape supports an oxocarbenium ion as the reaction intermediate. Organic and Biomolecular Chemistry, 2019, 17, 7891-7899.	2.8	10
236	Enhanced Rigidity Changes Ultraviolet Absorption: Effect of a Merocyanine Binder on G-Quadruplex Photophysics. Journal of Physical Chemistry Letters, 2020, 11, 10212-10218.	4.6	10
237	Validating fewest-switches surface hopping in the presence of laser fields. Journal of Chemical Physics, 2021, 154, 144102.	3.0	10
238	Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst. Chemical Science, 2021, 12, 12918-12927.	7.4	10
239	HFIP Mediates a Direct Câ^'C Coupling between Michael Acceptors and Eschenmoser's salt. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
240	Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. Jacs Au, 2022, 2, 1699-1711.	7.9	10
241	Quantum Simulations for Isotope Effects of IR + UV Laser Pulses on Symmetry and Selective Hydrogen Bond Breaking. Zeitschrift Fur Physikalische Chemie, 2003, 217, 1577-1596.	2.8	9
242	Optical resolution of oriented enantiomers via photodissociation: quantum model simulations for H2POSD. Physical Chemistry Chemical Physics, 2005, 7, 4096.	2.8	9
243	Photochemistry of CH3Mn(CO)5: A multiconfigurationalab initio study. Journal of Computational Chemistry, 2006, 27, 1781-1786.	3.3	9
244	The role of Ag(I) ions in the electronic spectroscopy of adenine–cytosine mispairs. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 301-309.	3.9	9
245	Nuclear Spin Selective Torsional States: Implications of Molecular Symmetry. Zeitschrift Fur Physikalische Chemie, 2013, 227, 1021-1048.	2.8	9
246	Site-Specific Photo-oxidation of the Isolated Adenosine-5′-triphosphate Dianion Determined by Photoelectron Imaging. Journal of Physical Chemistry Letters, 2020, 11, 8195-8201.	4.6	9
247	Orbital-free photophysical descriptors to predict directional excitations in metal-based photosensitizers. Chemical Science, 2020, 11, 7685-7693.	7.4	9
248	Unveiling the reaction mechanism of novel copperN-alkylated tetra-azacyclophanes with outstanding superoxide dismutase activity. Chemical Communications, 2020, 56, 7511-7514.	4.1	9
249	Application of optimal control theory to ultrafast nonresonant multiphoton transitions in polyatomic molecules. Optics Communications, 2006, 264, 502-510.	2.1	8
250	A CASPT2 study of the excited states of adenine tautomers with silver ions. Chemical Physics Letters, 2007, 435, 136-141.	2.6	8
251	A wavepacket study of the low-energy charge transfer process in the S3+ + H reaction using time-resolved electronic densities. Physical Chemistry Chemical Physics, 2010, 12, 5439.	2.8	8
252	9D nonadiabatic quantum dynamics through a four-state conical intersection: Investigating the homolysis of the O–O bond in anthracene-9,10-endoperoxide. Journal of Chemical Physics, 2012, 137, 22A524.	3.0	8

#	Article	IF	CITATIONS
253	Insights into the deactivation of 5-bromouracil after ultraviolet excitation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160202.	3.4	8
254	Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 6396-6406.	2.5	8
255	Exploring density functional subspaces with genetic algorithms. Monatshefte Für Chemie, 2019, 150, 173-182.	1.8	8
256	The effect of N-heterocyclic carbene units on the absorption spectra of Fe(<scp>ii</scp>) complexes: a challenge for theory. Physical Chemistry Chemical Physics, 2020, 22, 27605-27616.	2.8	8
257	A Force Field for a Manganese-Vanadium Water Oxidation Catalyst: Redox Potentials in Solution as Showcase. Catalysts, 2021, 11, 493.	3.5	8
258	Photoâ€Initiated Cobaltâ€Catalyzed Radical Olefin Hydrogenation. Chemistry - A European Journal, 2021, 27, 16978-16989.	3.3	8
259	Jahnâ€Teller Effects in a Vanadateâ€Stabilized Manganeseâ€Oxo Cubane Water Oxidation Catalyst. Chemistry - A European Journal, 2021, 27, 17066-17077.	3.3	8
260	Isotopic effects on the control of molecular handedness of H2 POSH by ultrashort laser pulses. European Physical Journal D, 2001, 14, 185-190.	1.3	7
261	A first principles approach to optimal control. Theoretical Chemistry Accounts, 2006, 116, 148-159.	1.4	7
262	Quantum chemistry based inversion of experimental pump–probe spectra: Model simulations for CpMn(CO)3. Chemical Physics, 2006, 329, 126-138.	1.9	7
263	Few-cycle laser pulses to obtain spatial separation of OHFâ^' dissociation products. Journal of Chemical Physics, 2009, 130, 024310.	3.0	7
264	The role of molecular orientation and light polarization on the control of bond dissociation. Time-dependent simulations for CH ₂ BrCl. Journal of Modern Optics, 2009, 56, 790-798.	1.3	7
265	Non-adiabatic photoisomerization versus photodissociation dynamics of the chiral fluoroethylene derivative (4-methylcyclohexylidene) fluoromethane. Chemical Physics, 2010, 369, 138-144.	1.9	7
266	Quantum chemical investigation of the thermal rearrangement of cis- and trans-pinane. Physical Chemistry Chemical Physics, 2010, 12, 9884.	2.8	7
267	Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative. Journal of Chemical Physics, 2014, 141, 164323.	3.0	7
268	Ruthenium Carbonyl Complexes with Azole Heterocycles – Synthesis, Xâ€ray Diffraction Structures, DFT Calculations, Solution Behavior, and Antiproliferative Activity. European Journal of Inorganic Chemistry, 2016, 2016, 1566-1576.	2.0	7
269	Cover Image, Volume 8, Issue 6. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1400.	14.6	7
270	The 3s Rydberg state as a doorway state in the ultrafast dynamics of 1,1-difluoroethylene. Physical Chemistry Chemical Physics, 2019, 21, 4871-4878.	2.8	7

#	Article	IF	CITATIONS
271	The Role of Triplet States in the Photodissociation of a Platinum Azide Complex by a Density Matrix Renormalization Group Method. Journal of Physical Chemistry Letters, 2021, 12, 4876-4881.	4.6	7
272	Hydrogenâ€Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angewandte Chemie - International Edition, 2021, 60, 18688-18693.	13.8	7
273	A Ruthenium(II) Water Oxidation Catalyst Containing a pH-Responsive Ligand Framework. Inorganic Chemistry, 2021, 60, 13299-13308.	4.0	7
274	On the population of triplet states of 2-seleno-thymine. Physical Chemistry Chemical Physics, 2021, 23, 5447-5454.	2.8	7
275	Oxygenâ€Doped PAH Electrochromes: Difurano, Dipyrano, and Furanoâ€Pyrano Containing Naphthaleneâ€Cored Molecules. European Journal of Organic Chemistry, 2022, 2022, .	2.4	7
276	Thermochemistry and UV Spectroscopy of Alkyl Peroxynitrates. Journal of Physical Chemistry A, 2010, 114, 9537-9544.	2.5	6
277	Directional and regioselective hole injection of spiropyran photoswitches intercalated into A/T-duplex DNA. Physical Chemistry Chemical Physics, 2019, 21, 17971-17977.	2.8	6
278	Solvent reorganization triggers photo-induced solvated electron generation in phenol. Physical Chemistry Chemical Physics, 2019, 21, 14261-14269.	2.8	6
279	DNA-binding mechanism of spiropyran photoswitches: the role of electrostatics. Physical Chemistry Chemical Physics, 2019, 21, 8614-8618.	2.8	6
280	Taming Disulfide Bonds with Laser Fields. Nonadiabatic Surface-Hopping Simulations in a Ruthenium Complex. Journal of Physical Chemistry Letters, 2022, 13, 1894-1900.	4.6	6
281	Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
282	Theory of ultrafast nonresonant multiphoton transitions in polyatomic molecules: Basics and application to optimal control theory. Journal of Chemical Physics, 2007, 127, 144102.	3.0	5
283	Can TD-DFT predict excited states in endoperoxides?. Computational and Theoretical Chemistry, 2011, 975, 13-19.	2.5	5
284	Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	5
285	Electrochemistry and time dependent DFT study of a (vinylenedithio)-TTF derivative in different oxidation states. Electrochimica Acta, 2013, 100, 188-196.	5.2	5
286	Revealing Ultrafast Population Transfer between Nearly Degenerate Electronic States. Journal of Physical Chemistry Letters, 2020, 11, 1443-1449.	4.6	5
287	αâ€Funktionalisierung von Ketonen durch metallfreie elektrophile Aktivierung. Angewandte Chemie, 2020, 132, 21121-21125.	2.0	5
288	Quantum Theory: The Challenge of Transition Metal Complexes. Physical Chemistry Chemical Physics, 2021, 23, 2533-2534.	2.8	5

#	Article	IF	CITATIONS
289	Solvation Effects on the Thermal Helix Inversion of Molecular Motors from QM/MM Calculations. Chemistry, 2022, 4, 185-195.	2.2	5
290	H-abstraction is more efficient than cis–trans isomerization in (4-methylcyclohexylidene) fluoromethane. An ab initio molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14, 6241-6249.	2.8	4
291	Separating nuclear spin isomers using a pump–dump laser scheme. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	4
292	Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect. Journal of Physical Chemistry A, 2016, 120, 4907-4914.	2.5	4
293	Functional materials: making the world go round. Physical Chemistry Chemical Physics, 2019, 21, 8988-8991.	2.8	4
294	Meyer–Schuster-type rearrangement for the synthesis of α-selanyl-α,β-unsaturated thioesters. Chemical Communications, 2021, 57, 117-120.	4.1	4
295	Spectral Signatures of Oxidation States in a Manganeseâ€Oxo Cubane Water Oxidation Catalyst. Chemistry - A European Journal, 2021, 27, 17078-17086.	3.3	4
296	Ultrafast Laser-Induced Processes Described by Ab Initio Molecular Dynamics. Springer Series in Chemical Physics, 2014, , 145-170.	0.2	4
297	Simplified State Interaction for Matrix Product State Wave Functions. Journal of Chemical Theory and Computation, 2021, 17, 7477-7485.	5.3	4
298	Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors. Angewandte Chemie, 0, , .	2.0	4
299	Thermochemistry of the Reactions F+(3P,1D) + PH3in the Gas Phase. Journal of Physical Chemistry A, 2000, 104, 8075-8080.	2.5	3
300	Conical intersections in the photoisomerization and photodissociation of a chiral fluoroethylene derivative ((4-methylcyclohexylidene) fluoromethane). Chemical Physics Letters, 2007, 443, 43-48.	2.6	3
301	On the puzzling deactivation mechanism of thymine after light irradiation. , 2008, , .		3
302	Wavelength-dependent photoproduct formation of phycocyanobilin in solution – Indications for competing reaction pathways. Chemical Physics Letters, 2011, 515, 163-169.	2.6	3
303	The role of πσ [*] states in the photochemistry of the chiral fluoroethylene derivative (4â€methylcyclohexylidene)fluoromethane. International Journal of Quantum Chemistry, 2011, 111, 3394-3404.	2.0	3
304	Gas-phase electrophilic aromatic substitution mechanism with strong electrophiles explained by ab initio non-adiabatic dynamics. Physical Chemistry Chemical Physics, 2014, 16, 18686-18689.	2.8	3
305	Discrimination of 1,1-difluoroethylene nuclear spin isomers in the presence of non-adiabatic coupling terms. Chemical Physics Letters, 2017, 683, 205-210.	2.6	3
306	General Trajectory Surface Hopping Method for Ultrafast Nonadiabatic Dynamics. RSC Theoretical and Computational Chemistry Series, 2018, , 348-385.	0.7	3

#	Article	IF	CITATIONS
307	Quantum Control of Ultrafast Laser-Driven Isomerization Reactions: Proton Transfer and Selective Preparation of Enantiomers. , 0, , 189-198.		2
308	<i>Ortho</i> -Nitrobenzaldehyde 1:1 Water Complexes. The Influence of Solute Water Interactions in the Vertical Excited Spectrum. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1263-1278.	2.8	2
309	Inside Cover: A Timeâ€Dependent Picture of the Ultrafast Deactivation of <i>keto</i> â€Cytosine Including Threeâ€State Conical Intersections (ChemPhysChem 17/2010). ChemPhysChem, 2010, 11, 3554-3554.	2.1	2
310	Publisher's Note: Molecular oxygen observed by direct photoproduction from carbon dioxide [Phys. Rev. A 95 , 011404(R) (2017)]. Physical Review A, 2017, 95, .	2.5	2
311	Intramolecular hydrogen bonding in conformationally semi-rigid α-acylmethane derivatives: a theoretical NMR study. Organic and Biomolecular Chemistry, 2017, 15, 7572-7579.	2.8	2
312	Ultrafast photochemistry of a molybdenum carbonyl–nitrosyl complex with a triazacyclononane coligand. Physical Chemistry Chemical Physics, 2021, 23, 24187-24199.	2.8	2
313	The importance of finite temperature and vibrational sampling in the absorption spectrum of a nitro-functionalized Ru(<scp>ii</scp>) water oxidation catalyst. Physical Chemistry Chemical Physics, 2021, 23, 17724-17733.	2.8	2
314	Hydrogenâ€Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes. Angewandte Chemie, 2021, 133, 18836-18841.	2.0	2
315	A Density Matrix Renormalization Group Study of the Lowâ€Lying Excited States of a Molybdenum Carbonylâ€Nitrosyl Complex. ChemPhysChem, 2021, 22, 2371-2377.	2.1	2
316	HFIP Mediates a Direct C–C Coupling between Michael Acceptors and Eschenmoser's salt. Angewandte Chemie, 0, , .	2.0	2
317	Laser-driven Ultrafast Hydrogen Transfer Dynamics. , 0, , 79-103.		1
318	Control of concerted two bond versus single bond dissociation in CH3Co(CO)4 via an intermediate state using pump-dump laser pulses. Journal of Chemical Physics, 2007, 127, 134311.	3.0	1
319	Visible light-induced cis/trans isomerization of dicarbonyl Fe(II) PNP pincer complexes. Polyhedron, 2018, 143, 94-98.	2.2	1
320	Ultrafast Intersystem Crossing in SO2 and Nucleobases. Springer Proceedings in Physics, 2015, , 509-513.	0.2	1
321	Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angewandte Chemie, 2020, 132, 16976-16992.	2.0	1
322	Complex systems in the gas phase. , 2007, , 153-256.		1
323	Quantum control of reactions with few-cycle infrared and ultraviolet laser pulses. Computational and Theoretical Chemistry, 2004, 709, 207-213.	1.5	0
324	Auf dem Weg zur Professorin. Nachrichten Aus Der Chemie, 2005, 53, 713-713.	0.0	0

#	Article	IF	CITATIONS
325	Laser Control of Wavepacket Photodissociation and Photoisomerization Dynamics in Isolated Molecules. AIP Conference Proceedings, 2007, , .	0.4	0
326	Laserkontrolle. Nachrichten Aus Der Chemie, 2007, 55, 315-317.	0.0	0
327	Tribute to Jörn Manz. Journal of Physical Chemistry A, 2012, 116, 11041-11042.	2.5	0
328	Ultrafast charge transfer dynamics induced by low energy collisions. Application to ion-atom and ion-molecule systems. Journal of Physics: Conference Series, 2012, 388, 082054.	0.4	0
329	Ab initio and DFT analysis of the low-lying electronic states of metal dihalides: quantum chemical calculations on the neutral BrMCl (M = Cu, Ag, Au). Physical Chemistry Chemical Physics, 2013, 15, 10151.	2.8	0
330	Origin of the Regioselectivity in the Gasâ€Phase Aniline+CH ₃ ⁺ Electrophilic Aromatic Substitution. ChemPhysChem, 2015, 16, 2366-2374.	2.1	0
331	Direct observation of laser-induced O<inf>2</inf> ⁺ production from CO <inf>2</inf> . , 2017, , .		0
332	Laser-Induced Oxygen Formation from Carbon Dioxide. Journal of Physics: Conference Series, 2017, 875, 032024.	0.4	0
333	Frontispiece: A Valence-Delocalised Osmium Dimer capable of Dinitrogen Photocleavage: Ab Initio Insights into Its Electronic Structure. Chemistry - A European Journal, 2018, 24, .	3.3	0
334	Tribute to Manuel YÃį $ ilde{A}$ ±ez and Otilia M $ ilde{A}$ ³ . Journal of Physical Chemistry A, 2018, 122, 5671-5672.	2.5	0
335	Einführung in die computergestützte Quantenchemie. EXamen Press, 2008, , 391-413.	0.0	0
336	Ultrafast Intersystem Crossing in SO2 and Nucleobases. , 2014, , .		0
337	Molecular light switch effect in Ru(II) complexes intercalated in DNA: a theoretical study. , 2019, , 778-779.		0
338	Investigation of Complex Relaxation Dynamics of Nearly Degenerated Rydberg States in Acetone. , 2020, , .		0
339	Biological systems: Applications and perspectives. , 2007, , 733-828.		0
340	Back Cover: Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors (Angew. Chem. Int. Ed. 30/2022). Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
341	Rücktitelbild: Unravelling the Turnâ€On Fluorescence Mechanism of a Fluoresceinâ€Based Probe in GABA _A Receptors (Angew. Chem. 30/2022). Angewandte Chemie, 2022, 134, .	2.0	0