Andrei Kanaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/540290/publications.pdf Version: 2024-02-01

ANDREI KANAEV

#	Article	IF	CITATIONS
1	Defect-related photoluminescence of hexagonal boron nitride. Physical Review B, 2008, 78, .	3.2	199
2	New homogeneously doped Fe(III)–TiO2 photocatalyst for gaseous pollutant degradation. Applied Catalysis A: General, 2011, 399, 191-197.	4.3	59
3	New photoactive hybrid organic–inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties. Journal of Materials Chemistry, 2005, 15, 3380.	6.7	56
4	Light-induced charge separation and storage in titanium oxide gels. Physical Review E, 2005, 71, 021403.	2.1	53
5	Stability and Growth of Titanium-oxo-alkoxy TixOy(OiPr)zClusters. Journal of Physical Chemistry C, 2007, 111, 16243-16248.	3.1	48
6	Sol–Gel Reactor With Rapid Micromixing. Chemical Engineering Research and Design, 2005, 83, 67-74.	5.6	47
7	Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer. Physical Chemistry Chemical Physics, 2009, 11, 1248.	2.8	47
8	Elaboration of pure and doped TiO2 nanoparticles in sol–gel reactor with turbulent micromixing: Application to nanocoatings and photocatalysis. Chemical Engineering Research and Design, 2010, 88, 1123-1130.	5.6	42
9	Nanoparticulate TiO ₂ –Al ₂ O ₃ Photocatalytic Media: Effect of Particle Size and Polymorphism on Photocatalytic Activity. ACS Catalysis, 2012, 2, 1884-1892.	11.2	41
10	Amorphous–anatase phase transition in single immobilized TiO2 nanoparticles. Chemical Physics Letters, 2013, 558, 53-56.	2.6	40
11	Photocatalytic paper based on sol–gel titania nanoparticles immobilized on porous silica for VOC abatement. Applied Catalysis B: Environmental, 2014, 154-155, 123-133.	20.2	34
12	Extinction of photo-induced Ti3+ centres in titanium oxide gels and gel-based oxo-PHEMA hybrids. Chemical Physics Letters, 2006, 429, 523-527.	2.6	33
13	Kinetics of UV-induced darkening of titanium-oxide gels. Applied Surface Science, 2005, 248, 86-90.	6.1	32
14	Novel nanostructured pHEMA–TiO2 hybrid materials with efficient light-induced charge separation. Nanoscale, 2011, 3, 1807.	5.6	24
15	Temperature dependence of the titanium oxide sols precipitation kinetics in the sol–gel process. Chemical Physics Letters, 2004, 398, 157-162.	2.6	22
16	Nucleationâ^'Growth of TiO ₂ Nanoparticles Doped with Iron Acetylacetonate. Journal of Physical Chemistry C, 2011, 115, 5244-5250.	3.1	22
17	Growth of Silver Nanoclusters on Monolayer Nanoparticulate Titanium-oxo-alkoxy Coatings. Journal of Physical Chemistry C, 2012, 116, 17239-17247.	3.1	20
18	Photoluminescence and electronic transitions in cubic silicon nitride. Scientific Reports, 2016, 6, 18523.	3.3	19

Andrei Kanaev

#	Article	IF	CITATIONS
19	Synthesis and photoluminescence properties of nanostructured mullite/α-Al2O3. Acta Materialia, 2014, 71, 108-116.	7.9	18
20	Effect of Light Intensity on the Free-Radical Photopolymerization Kinetics of 2-Hydroxyethyl Methacrylate: Experiments and Simulations. Journal of Physical Chemistry B, 2020, 124, 6857-6866.	2.6	18
21	Isolation of titania nanoparticles in monolithic ultraporous alumina: Effect of nanoparticle aggregation on anatase phase stability and photocatalytic activity. Applied Catalysis A: General, 2011, 402, 156-161.	4.3	17
22	Solvent effect on nucleation-growth of titanium-oxo-alkoxy nanoparticles. Chemical Physics Letters, 2017, 672, 119-123.	2.6	17
23	Laser imprinting of 3D structures in gel-based titanium oxide organic-inorganic hybrids. Applied Physics A: Materials Science and Processing, 2006, 84, 27-30.	2.3	16
24	Nucleation and growth kinetics of zirconium-oxo-alkoxy nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 2651-2659.	2.8	16
25	Laser-Assisted High-Pressure-Induced Polymerization of 2-(Hydroxyethyl)methacrylate. Journal of Physical Chemistry B, 2015, 119, 3577-3582.	2.6	15
26	Mixing strategies for zinc oxide nanoparticle synthesis via a polyol process. AICHE Journal, 2015, 61, 1708-1721.	3.6	13
27	A New Route for High-Purity Organic Materials: High-Pressure-Ramp-Induced Ultrafast Polymerization of 2-(Hydroxyethyl)Methacrylate. Scientific Reports, 2016, 5, 18244.	3.3	13
28	Electronic transitions in α, Î, and γ polymorphs of ultraporous monolithic alumina. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1026-1029.	2.4	12
29	Surface structuring of rutile TiO ₂ (100) and (001) single crystals with femtosecond pulsed laser irradiation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2600.	2.1	12
30	Morphology and luminescence of MgAl2O4 ceramics obtained via spark plasma sintering. Ceramics International, 2019, 45, 8305-8312.	4.8	12
31	Luminescence properties of pHEMA-TiO2 gels based hybrids materials. Journal of Luminescence, 2012, 132, 1192-1199.	3.1	11
32	Synthesis of organic–inorganic hybrids <i>via</i> a high-pressure-ramp process: the effect of inorganic nanoparticle loading on structural and photochromic properties. Nanoscale, 2018, 10, 22293-22301.	5.6	11
33	Porous monoliths consisting of aluminum oxyhydroxide nanofibrils: 3D structure, chemical composition, and phase transformations in the temperature range 25–1700 °C. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	11
34	From nanoparticles to bulk crystalline solid: nucleation, growth kinetics and crystallisation of mixed oxide Zr _x Ti _{1â^'x} O ₂ nanoparticles. CrystEngComm, 2017, 19, 3955-3965.	2.6	9
35	Design of Novel Sulfated Nanozirconia Catalyst for Biofuel Synthesis. Industrial & Engineering Chemistry Research, 2017, 56, 1394-1403.	3.7	8
36	Effects of Ta doping and irradiation with He+ ions on photoluminescence of MgAl2O4 spinel ceramics. Journal of the European Ceramic Society, 2020, 40, 3215-3221.	5.7	8

Andrei Kanaev

#	Article	IF	CITATIONS
37	Electronic Band Transitions in Î ³ -Ge3N4. Electronic Materials Letters, 2021, 17, 315-323.	2.2	8
38	A new solvothermal route to efficient titania photocatalyst. Materials Chemistry and Physics, 2015, 160, 73-79.	4.0	7
39	Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modified with tris(8-hydroxyquinolinato)aluminium. Microporous and Mesoporous Materials, 2020, 293, 109804.	4.4	7
40	Defects induced by He+ irradiation in \hat{I}^3 -Si3N4. Journal of Luminescence, 2021, 237, 118132.	3.1	7
41	Formation of gel of preformed size-selected titanium-oxo-alkoxy nanoparticles: towards organic-inorganic hybrid material with efficient interfacial electron transfer. Materials Research Express, 2014, 1, 045039.	1.6	6
42	Effect of laser polarization and crystalline orientation on ZnO surface nanostructuring in the regime of high-density electronic excitation. Journal of the Optical Society of America B: Optical Physics, 2014, 31, C44.	2.1	6
43	The Role of Crystalline Orientation in the Formation of Surface Patterns on Solids Irradiated with Femtosecond Laser Double Pulses. Applied Sciences (Switzerland), 2020, 10, 8811.	2.5	6
44	Solvent-Free Synthesized Monolithic Ultraporous Aluminas for Highly Efficient Removal of Remazol Brilliant Blue R: Equilibrium, Kinetic, and Thermodynamic Studies. Materials, 2021, 14, 3054.	2.9	6
45	Photocatalytic Activity of Nanocoatings Based on Mixed Oxide V-TiO2 Nanoparticles with Controlled Composition and Size. Catalysts, 2021, 11, 1457.	3.5	6
46	Alkoxysilane effect in hybrid material: A comparison of pHEMA-TiO2 and pMAPTMS-TiO2 nanoparticulate hybrids. Materials Research Bulletin, 2019, 114, 130-137.	5.2	5
47	Microstructure and optical properties of alumina sintered from various phases. Ceramics International, 2019, 45, 9625-9630.	4.8	5
48	Nucleation and growth of mixed vanadium-titanium oxo-alkoxy nanoparticles in sol-gel synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125636.	4.7	5
49	Pathways control in modification of solid surfaces induced by temporarily separated femtosecond laser pulses. Applied Surface Science, 2021, 566, 150611.	6.1	5
50	Observation of cavitation in exocentric T-mixer. Chemical Engineering Journal, 2017, 321, 146-150.	12.7	4
51	Nucleation and fractal growth of zirconium oxo-alkoxy nanoparticles at the induction stage of sol–gel process. Journal of Sol-Gel Science and Technology, 2012, 64, 145-148.	2.4	3
52	Photocatalytic Nanoparticulate Zr _x Ti _{1â€x} O ₂ Coatings with Controlled Homogeneity of Elemental Composition. ChemistrySelect, 2018, 3, 11118-11126.	1.5	3
53	Polymerization initiation of pure 2-hydroxyethylmethacrylate under shock wave compression. New Journal of Chemistry, 2022, 46, 9258-9263.	2.8	2
54	Laccase Cross-Linked Ultraporous Aluminas for Sustainable Biodegradation of Remazol Brilliant Blue R. Catalysts, 2022, 12, 744.	3.5	2

0.4

0

#	Article	IF	CITATIONS
55	Study of the Photocatalytic Antimicrobial Activity of Nanocomposites Based on TiO2–Al2O3 under Action of LED Radiation (405 nm) on Staphylococci. Optics and Spectroscopy (English Translation of) Tj ETQq1	1 007.843	14 rgBT /Ov∉rlo

56 Mixing-Time in T-Mixer Reactor. Lecture Notes in Mechanical Engineering, 2019, , 1-8.