Liang-Dong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402846/publications.pdf

Version: 2024-02-01

186265 128289 5,399 63 28 60 citations h-index g-index papers 63 63 63 7032 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	12.6	2,513
2	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	5.4	222
3	A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity, 2012, 56, 95-129.	12.3	211
4	Pestalotiopsisâ€"morphology, phylogeny, biochemistry and diversity. Fungal Diversity, 2011, 50, 167-187.	12.3	198
5	Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity, 2011, 47, 85-95.	12.3	178
6	Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome, 2019, 7, 57.	11.1	146
7	Host plant genusâ€level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Molecular Ecology, 2013, 22, 3403-3414.	3.9	133
8	Seasonal and Tissue Age Influences on Endophytic Fungi of <i>Pinus tabulaeformis</i> (Pinaceae) in the Dongling Mountains, Beijing. Journal of Integrative Plant Biology, 2008, 50, 997-1003.	8.5	115
9	Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015, 205, 771-785.	7. 3	107
10	Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza, 2015, 25, 267-276.	2.8	92
11	Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 2014, 89, 594-605.	2.7	79
12	Increased precipitation, rather than warming, exerts a strong influence on arbuscular mycorrhizal fungal community in a semiarid steppe ecosystem. Botany, 2016, 94, 459-469.	1.0	78
13	Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Diversity, 2010, 43, 93-101.	12.3	73
14	Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy. Molecular Phylogenetics and Evolution, 2010, 57, 528-535.	2.7	67
15	The Arbuscular Mycorrhizal Fungal Community Response to Warming and Grazing Differs between Soil and Roots on the Qinghai-Tibetan Plateau. PLoS ONE, 2013, 8, e76447.	2.5	67
16	Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytologist, 2017, 213, 1874-1885.	7.3	67
17	Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17, 689-693.	2.8	62
18	<i>Pestalotiopsis</i> species associated with <i>Camellia sinensis</i> (tea). Mycotaxon, 2013, 123, 47-61.	0.3	52

#	Article	IF	CITATIONS
19	A destructive new disease of Syzygium samarangense in Thailand caused by the new species Pestalotiopsis samarangensis. Tropical Plant Pathology, 2013, 38, 227-235.	1.5	50
20	Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China. Mycorrhiza, 2004, 14, 25-30.	2.8	49
21	Arbuscular mycorrhizal structure and fungi associated with mosses. Mycorrhiza, 2007, 17, 319-325.	2.8	46
22	Dryland forest management alters fungal community composition and decouples assembly of rootand soil-associated fungal communities. Soil Biology and Biochemistry, 2017, 109, 14-22.	8.8	39
23	Improving the backbone tree for the genus Pestalotiopsis; addition of P. steyaertii and P. magna sp. nov Mycological Progress, 2014, 13, 617-624.	1.4	37
24	Community structure of endophytic fungi of four mangrove species in Southern China. Mycology, 2016, 7, 180-190.	4.4	37
25	Host Phylogeny Is a Major Determinant of Fagaceae-Associated Ectomycorrhizal Fungal Community Assembly at a Regional Scale. Frontiers in Microbiology, 2018, 9, 2409.	3.5	36
26	New Azaphilones and Chlorinated Phenolic Glycosides from Chaetomium elatum with Caspase-3 Inhibitory Activity. Planta Medica, 2012, 78, 1683-1689.	1.3	34
27	Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture. Microbial Ecology, 2016, 72, 647-658.	2.8	32
28	Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza, 2012, 22, 461-470.	2.8	31
29	Pseudopestalotiopsis ignota and Ps. camelliae spp. nov. associated with grey blight disease of tea in China. Mycological Progress, 2016, 15 , 1 .	1.4	31
30	Phylogenetic relatedness explains highly interconnected and nested symbiotic networks of woody plants and arbuscular mycorrhizal fungi in a Chinese subtropical forest. Molecular Ecology, 2017, 26, 2563-2575.	3.9	31
31	Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecology, 2019, 41, 107-115.	1.6	30
32	Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys, 2020, 62, 75-95.	1.9	30
33	Host plant phylogeny and geographic distance strongly structure Betulaceae-associated ectomycorrhizal fungal communities in Chinese secondary forest ecosystems. FEMS Microbiology Ecology, 2019, 95, .	2.7	28
34	Micronematobotrys, a new genus and its phylogenetic placement based on rDNA sequence analyses. Mycological Progress, 2010, 9, 567-574.	1.4	22
35	Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022, 24, 4236-4255.	3.8	22
36	Seasonality and host preference of arbuscular mycorrhizal fungi of five plant species in the inner Mongolia steppe, China. Brazilian Journal of Microbiology, 2011, 42, 57-65.	2.0	21

#	Article	IF	CITATIONS
37	Ectomycorrhizal community composition of Pinus tabulaeformis assessed by ITS-RFLP and ITS sequences. Botany, 2010, 88, 590-595.	1.0	20
38	Ectomycorrhizae associated with Castanopsis fargesii (Fagaceae) in a subtropical forest, China. Mycological Progress, 2011, 10, 323-332.	1.4	20
39	Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau. Scientific Reports, 2016, 6, 36606.	3.3	20
40	Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest. Biology and Fertility of Soils, 2021, 57, 685-697.	4.3	20
41	Assembly processes lead to divergent soil fungal communities within and among 12 forest ecosystems along a latitudinal gradient. New Phytologist, 2021, 231, 1183-1194.	7.3	20
42	Two new Pythium species from China based on the morphology and DNA sequence data. Mycological Progress, 2012, 11, 689-698.	1.4	19
43	Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
44	Genetic diversity of an ectomycorrhizal fungus Tricholoma terreum in a Larix principis-rupprechtii stand assessed using random amplified polymorphic DNA. Mycorrhiza, 2003, 13, 265-270.	2.8	18
45	Sporormiellin A, the first tetrahydrofuran-fused furochromone with an unprecedented tetracyclic skeleton from Sporormiella minima. RSC Advances, 2014, 4, 24295-24299.	3.6	16
46	Arbuscular mycorrhizal fungus identity and diversity influence subtropical tree competition. Fungal Ecology, 2016, 20, 115-123.	1.6	16
47	Different responses of arbuscular mycorrhizal fungal community to day-time and night-time warming in a semiarid steppe. Science Bulletin, 2014, 59, 5080-5089.	1.7	15
48	Community Assembly of Endophytic Fungi in Ectomycorrhizae of Betulaceae Plants at a Regional Scale. Frontiers in Microbiology, 2019, 10, 3105.	3.5	14
49	Spatial structure and diversity of woody plants and ectomycorrhizal fungus sporocarps in a natural subtropical forest. Mycorrhiza, 2007, 17, 271-278.	2.8	13
50	Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a chinese secondary forest. Journal of Microbiology, 2013, 51, 295-300.	2.8	13
51	A New Xanthone Glycoside from the Endolichenic Fungus Sporormiella irregularis. Molecules, 2016, 21, 764.	3.8	13
52	A comparative study of arbuscular mycorrhizal fungi in forest, grassland and cropland in the Tibetan Plateau, China. Mycology, 2010, 1, 163-170.	4.4	12
53	Pestalotiopsis yunnanensis sp. nov., an endophyte from Podocarpus macrophyllus (Podocarpaceae) based on morphology and ITS sequence data. Mycological Progress, 2013, 12, 563-568.	1.4	11
54	Two new species, Pythium agreste and P. wuhanense, based on morphological characteristics and DNA sequence data. Mycological Progress, 2014, 13, 145-155.	1.4	9

#	Article	IF	CITATIONS
55	Late Quaternary climate change explains soil fungal community composition rather than fungal richness in forest ecosystems. Ecology and Evolution, 2019, 9, 6678-6692.	1.9	9
56	Plant identity strongly structures the root-associated fungal community in a diverse subtropical forest. Basic and Applied Ecology, 2021, 55, 98-109.	2.7	9
57	Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo <i>etÂal</i> . (2014). Molecular Ecology, 2014, 23, 996-999.	3.9	6
58	Response of arbuscular mycorrhizal fungal community in soil and roots to grazing differs in a wetland on the Qinghai-Tibet plateau. PeerJ, 2020, 8, e9375.	2.0	6
59	Molecular Diversity and Identification of Endophytic Fungi., 2010,, 277-296.		4
60	Presidential address: recent advance of mycorrhizal research in China. Mycology, 2018, 9, 1-6.	4.4	4
61	Spororrminone A and 2- <i>epi</i> -spororrminone A, two new chromones from an endolichenic fungus <i>Sporormiella irregularis</i> . Natural Product Research, 2020, 34, 3117-3124.	1.8	3
62	Specific network and phylosymbiosis pattern in endophyte community of coastal halophytes. Fungal Ecology, 2021, 53, 101088.	1.6	3
63	Effects of ectomycorrhizal fungal identity and diversity on subtropical tree competition. Journal of Plant Ecology, 0, , rtw060.	2.3	1