
Robert M Prins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amineâ€weighted chemical exchange saturation transfer magnetic resonance imaging in brain tumors. NMR in Biomedicine, 2023, 36, .	2.8	7
2	Diffusion MRI is an early biomarker of overall survival benefit in IDH wild-type recurrent glioblastoma treated with immune checkpoint inhibitors. Neuro-Oncology, 2022, 24, 1020-1028.	1.2	12
3	The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 2022, 3, 11-24.	13.2	21
4	The future of cancer immunotherapy for brain tumors: a collaborative workshop. Journal of Translational Medicine, 2022, 20, .	4.4	7
5	The immune landscape of common CNS malignancies: implications for immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 729-744.	27.6	50
6	Resolution of tissue signatures of therapy response in patients with recurrent GBM treated with neoadjuvant anti-PD1. Nature Communications, 2021, 12, 4031.	12.8	21
7	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	1.2	59
8	Is there a role for neoadjuvant anti-PD-1 therapies in glioma?. Current Opinion in Neurology, 2021, Publish Ahead of Print, 834-839.	3.6	0
9	ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nature Cancer, 2021, 2, 1372-1386.	13.2	39
10	Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nature Communications, 2021, 12, 6938.	12.8	93
11	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
12	Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro-Oncology, 2020, 22, 1425-1438.	1.2	37
13	IMMU-30. UPREGULATED T CELL AND INTERFERON-Γ-RELATED GENE EXPRESSION IS ASSOCIATED WITH INCREASED SURVIVAL IN RECURRENT PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2020, 22, iii365-iii366.	1.2	0
14	Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI. Neuro-Oncology, 2019, 21, 1184-1196.	1.2	28
15	SPINT2 is hypermethylated in both IDH1 mutated and wild-type glioblastomas, and exerts tumor suppression via reduction of c-Met activation. Journal of Neuro-Oncology, 2019, 142, 423-434.	2.9	8
16	Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Scientific Reports, 2019, 9, 2846.	3.3	32
17	Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 2019, 25, 477-486.	30.7	932
18	Evidence for Innate and Adaptive Immune Responses in a Cohort of Intractable Pediatric Epilepsy Surgery Patients. Frontiers in Immunology, 2019, 10, 121.	4.8	18

#	Article	IF	CITATIONS
19	Expression of PD-1 by T Cells in Malignant Glioma Patients Reflects Exhaustion and Activation. Clinical Cancer Research, 2019, 25, 1913-1922.	7.0	57
20	Tissue microarray analysis for epithelial membrane protein-2 as a novel biomarker for gliomas. Brain Tumor Pathology, 2018, 35, 1-9.	1.7	12
21	Precision Medicine in Pediatric Neurooncology: A Review. ACS Chemical Neuroscience, 2018, 9, 11-28.	3.5	12
22	First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. Journal of Translational Medicine, 2018, 16, 142.	4.4	376
23	Cytokines Produced by Dendritic Cells Administered Intratumorally Correlate with Clinical Outcome in Patients with Diverse Cancers. Clinical Cancer Research, 2018, 24, 3845-3856.	7.0	35
24	Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities. Cancer & Metabolism, 2018, 6, 4.	5.0	55
25	Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-Oncology, 2017, 19, now287.	1.2	128
26	Epithelial membrane protein-2 (EMP2) promotes angiogenesis in glioblastoma multiforme. Journal of Neuro-Oncology, 2017, 134, 29-40.	2.9	19
27	Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10220-10225.	7.1	79
28	Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget, 2017, 8, 48507-48520.	1.8	63
29	PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight, 2016, 1, .	5.0	128
30	TCR Sequencing Can Identify and Track Glioma-Infiltrating T Cells after DC Vaccination. Cancer Immunology Research, 2016, 4, 412-418.	3.4	64
31	Efficacy of systemic adoptive transfer immunotherapy targeting NY-ESO-1 for glioblastoma. Neuro-Oncology, 2016, 18, 368-378.	1.2	31
32	New applications for deep sequencing of the T cell receptor repertoire in cancer patients. Translational Cancer Research, 2016, 5, S842-S843.	1.0	1
33	Radial Mobility and Cytotoxic Function of Retroviral Replicating Vector Transduced, Non-adherent Alloresponsive T Lymphocytes. Journal of Visualized Experiments, 2015, , .	0.3	0
34	IMCT-10A PHASE I DOSE ESCALATION STUDY TO TEST THE SAFETY OF INTRATUMORAL ADOPTIVE IMMUNE THERAPY WITH AlloCTL IN RECURRENT GLIOMA PATIENTS. Neuro-Oncology, 2015, 17, v109.3-v109.	1.2	1
35	IMCT-11NEXT GENERATION T CELL RECEPTOR SEQUENCING CAN IDENTIFY, QUANTIFY, AND TRACK TUMOR-SPECIFIC T CELL POPULATIONS BEFORE AND AFTER DENDRITIC CELL VACCINATION IN GLIOBLASTOMA MULTIFORME PATIENTS. Neuro-Oncology, 2015, 17, v109.4-v110.	1.2	0
36	TMIC-04THERAPEUTIC ANTI-GLIOMA IMMUNITY IS DEPENDENT ON VACCINATION-INDUCED T CELL RESPONSES AND INHIBITION OF IAPC FUNCTION IN THE TUMOR MICROENVIRONMENT. Neuro-Oncology, 2015, 17, v214.8-v215.	1.2	0

#	Article	IF	CITATIONS
37	IMPS-19RETROVIRAL REPLICATING VECTOR-MEDIATED DELIVERY OF AN IMMUNODOMINANT NEO-ANTIGEN EPITOPE TARGET FOR VIRO-IMMUNOTHERAPY IN EXPERIMENTAL GLIOMA. Neuro-Oncology, 2015, 17, v117.2-v117.	1.2	0
38	2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metabolism, 2015, 22, 508-515.	16.2	190
39	Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncology, The, 2015, 16, e534-e542.	10.7	582
40	pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncology, 2015, 17, 1514-1524.	1.2	96
41	CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. , 2014, 2, 46.		52
42	Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in <i>IDH1</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 5808-5822.	7.0	30
43	Cytokine responsiveness of CD8+ T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. , 2014, 2, 10.		29
44	The histone deacetylase inhibitor, LBH589, promotes the systemic cytokine and effector responses of adoptively transferred CD8+ T cells. , 2014, 2, 8.		42
45	An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. Cancer Research, 2013, 73, 2850-2862.	0.9	148
46	Comparison of Glioma-associated Antigen Peptide-loaded Versus Autologous Tumor Lysate-loaded Dendritic Cell Vaccination in Malignant Glioma Patients. Journal of Immunotherapy, 2013, 36, 152-157.	2.4	111
47	Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Research, 2013, 33, 2047-56.	1.1	55
48	Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro-Oncology, 2012, 14, 1465-1472.	1.2	35
49	Identification of Retinol Binding Protein 1 Promoter Hypermethylation in Isocitrate Dehydrogenase 1 and 2 Mutant Gliomas. Journal of the National Cancer Institute, 2012, 104, 1458-1469.	6.3	56
50	Endogenous Vaults and Bioengineered Vault Nanoparticles for Treatment of Glioblastomas. Neurosurgery Clinics of North America, 2012, 23, 451-458.	1.7	10
51	Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. Journal of Neuro-Oncology, 2012, 107, 197-205.	2.9	280
52	Monitoring of Regulatory T Cell Frequencies and Expression of CTLA-4 on T Cells, before and after DC Vaccination, Can Predict Survival in GBM Patients. PLoS ONE, 2012, 7, e32614.	2.5	83
53	Implementing preclinical study findings to protocol design: translational studies with alloreactive CTL for gliomas. American Journal of Translational Research (discontinued), 2012, 4, 114-26.	0.0	8
54	An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011, 1, 442-456.	9.4	346

#	Article	IF	CITATIONS
55	Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas Ligand pathway. Journal of Translational Medicine, 2011, 9, 192.	4.4	38
56	Gene Expression Profile Correlates with T-Cell Infiltration and Relative Survival in Glioblastoma Patients Vaccinated with Dendritic Cell Immunotherapy. Clinical Cancer Research, 2011, 17, 1603-1615.	7.0	378
57	Enhanced Sensitivity to IL-2 Signaling Regulates the Clinical Responsiveness of IL-12–Primed CD8+ T Cells in a Melanoma Model. Journal of Immunology, 2011, 186, 5068-5077.	0.8	22
58	Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2010, 465, 966-966.	27.8	360
59	Cellular and vaccine therapeutic approaches for gliomas. Journal of Translational Medicine, 2010, 8, 100.	4.4	26
60	The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12932-12937.	7.1	208
61	Enhanced Antitumor Activity Induced by Adoptive T-Cell Transfer and Adjunctive Use of the Histone Deacetylase Inhibitor LAQ824. Cancer Research, 2009, 69, 8693-8699.	0.9	136
62	Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. International Immunology, 2009, 21, 155-165.	4.0	43
63	EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy. Science Signaling, 2009, 2, ra82.	3.6	282
64	Immunosensitization with a Bcl-2 small molecule inhibitor. Cancer Immunology, Immunotherapy, 2009, 58, 699-708.	4.2	19
65	Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462, 739-744.	27.8	3,315
66	Harnessing T-Cell Immunity to Target Brain Tumors. , 2009, , 1165-1217.		3
67	Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunology, Immunotherapy, 2008, 57, 1279-1289.	4.2	59
68	Cytomegalovirus Immunity after Vaccination with Autologous Glioblastoma Lysate. New England Journal of Medicine, 2008, 359, 539-541.	27.0	135
69	Lentiviral Vectors with CMV or MHCII Promoters Administered In Vivo: Immune Reactivity Versus Persistence of Expression. Molecular Therapy, 2007, 15, 1390-1399.	8.2	43
70	Central Nervous System Tumor Immunity Generated by a Recombinant Listeria monocytogenes Vaccine Targeting Tyrosinase Related Protein-2 and Real-Time Imaging of Intracranial Tumor Burden. Neurosurgery, 2006, 58, 169-178.	1.1	17
71	The TLR-7 Agonist, Imiquimod, Enhances Dendritic Cell Survival and Promotes Tumor Antigen-Specific T Cell Priming: Relation to Central Nervous System Antitumor Immunity. Journal of Immunology, 2006, 176, 157-164.	0.8	193
72	NK and CD4 Cells Collaborate to Protect against Melanoma Tumor Formation in the Brain. Journal of Immunology, 2006, 177, 8448-8455.	0.8	59

#	Article	IF	CITATIONS
73	Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Review of Neurotherapeutics, 2006, 6, 1481-1494.	2.8	24
74	Bioluminescent Imaging of Melanoma in Live Mice. Journal of Investigative Dermatology, 2005, 125, 159-165.	0.7	48
75	The TLR7 Agonist Imiquimod Enhances the Anti-Melanoma Effects of a RecombinantListeria monocytogenesVaccine. Journal of Immunology, 2005, 175, 1983-1990.	0.8	110
76	Dendritic Cell Vaccination in Glioblastoma Patients Induces Systemic and Intracranial T-cell Responses Modulated by the Local Central Nervous System Tumor Microenvironment. Clinical Cancer Research, 2005, 11, 5515-5525.	7.0	498
77	Tumor immunology, immunomics and targeted immunotherapy for central nervous system malignancies. Neurological Research, 2005, 27, 692-702.	1.3	15
78	Cellular immunity and immunotherapy of brain tumors. Frontiers in Bioscience - Landmark, 2004, 9, 3124.	3.0	33
79	Characterization of Defective CD4â^'CD8â^' T Cells in Murine Tumors Generated Independent of Antigen Specificity. Journal of Immunology, 2004, 172, 1602-1611.	0.8	29
80	Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex—bound immunogenic peptides induced by interferon-α and interferon-γ treatment of human glioblastoma multiforme. Journal of Neurosurgery, 2004, 100, 310-319.	1.6	74
81	Thymic Function and Output of Recent Thymic Emigrant T Cells During Intracranial Glioma Progression. Journal of Neuro-Oncology, 2003, 64, 45-54.	2.9	3
82	Thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. Journal of Neuro-Oncology, 2003, 64, 45-54.	2.9	34
83	Contrasting effects of interleukin-2 secretion by rat glioma cells contingent upon anatomical location: accelerated tumorigenesis in the central nervous system and complete rejection in the periphery. Journal of Neuroimmunology, 2003, 140, 49-60.	2.3	7
84	Immunology and Immunotherapy in Neurosurgical Disease. Neurosurgery, 2003, 53, 144-153.	1.1	39
85	Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Research, 2003, 63, 8487-91.	0.9	87
86	Irradiated tumor cell vaccine for treatment of an established glioma. I. Successful treatment with combined radiotherapy and cellular vaccination. Cancer Immunology, Immunotherapy, 2002, 51, 179-189.	4.2	32
87	Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression. Cancer Immunology, Immunotherapy, 2002, 51, 190-199.	4.2	35
88	Cytotoxic T cells infiltrating a glioma express an aberrant phenotype that is associated with decreased function and apoptosis. Cancer Immunology, Immunotherapy, 2001, 50, 285-292.	4.2	36
89	IL-6 Secretion by a Rat T9 Glioma Clone Induces a Neutrophil-Dependent Antitumor Response with Resultant Cellular, Antiglioma Immunity. Journal of Immunology, 2001, 166, 121-129.	0.8	42
90	Treatment of intracranial gliomas with bone marrow—derived dendritic cells pulsed with tumor antigens. Journal of Neurosurgery, 1999, 90, 1115-1124.	1.6	224