
Carmelo Sgobio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of αâ€synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology. Brain Pathology, 2022, 32, e13036.	4.1	12
2	Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathologica, 2020, 139, 319-345.	7.7	17
3	Longitudinal PET Monitoring of Amyloidosis and Microglial Activation in a Second-Generation Amyloid-Î ² Mouse Model. Journal of Nuclear Medicine, 2019, 60, 1787-1793.	5.0	41
4	Tau deletion reduces plaqueâ€associated <scp>BACE</scp> 1 accumulation and decelerates plaque formation in a mouse model of Alzheimer's disease. EMBO Journal, 2019, 38, e102345.	7.8	24
5	In vivo Ca 2+ imaging of astrocytic microdomains reveals a critical role of the amyloid precursor protein for mitochondria. Glia, 2019, 67, 985-998.	4.9	15
6	Unbalanced calcium channel activity underlies selective vulnerability of nigrostriatal dopaminergic terminals in Parkinsonian mice. Scientific Reports, 2019, 9, 4857.	3.3	13
7	Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2253-E2262.	7.1	101
8	Aldehyde dehydrogenase 1–positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Scientific Reports, 2017, 7, 5283.	3.3	34
9	Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating Dâ€serine homeostasis. EMBO Journal, 2016, 35, 2213-2222.	7.8	46
10	α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals. Journal of Neuroscience, 2016, 36, 4408-4414.	3.6	66
11	No apparent transmission of transgenic α–synuclein into nigrostriatal dopaminergic neurons in multiple mouse models. Translational Neurodegeneration, 2015, 4, 23.	8.0	7
12	Selective expression of Parkinson's disease-related <i>Leucine-rich repeat kinase 2</i> G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression. Human Molecular Genetics, 2015, 24, 5299-5312.	2.9	42
13	LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nature Neuroscience, 2014, 17, 367-376.	14.8	158
14	l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via β-adrenergic receptors. Experimental Neurology, 2014, 261, 377-385.	4.1	9
15	Optogenetic Measurement of Presynaptic Calcium Transients Using Conditional Genetically Encoded Calcium Indicator Expression in Dopaminergic Neurons. PLoS ONE, 2014, 9, e111749.	2.5	25
16	Rebalance of Striatal NMDA/AMPA Receptor Ratio Underlies the Reduced Emergence of Dyskinesia During D2-Like Dopamine Agonist Treatment in Experimental Parkinson's Disease. Journal of Neuroscience, 2012, 32, 17921-17931.	3.6	67
17	Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiology of Aging, 2012, 33, 2138-2144.	3.1	60
18	Contextual learning increases dendrite complexity and EphrinB2 levels in hippocampal mouse neurons. Behavioural Brain Research, 2012, 227, 175-183.	2.2	23

CARMELO SGOBIO

#	Article	lF	CITATIONS
19	Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain, 2012, 135, 1884-1899.	7.6	124
20	Conditional Expression of Parkinson's Disease-Related Mutant Â-Synuclein in the Midbrain Dopaminergic Neurons Causes Progressive Neurodegeneration and Degradation of Transcription Factor Nuclear Receptor Related 1. Journal of Neuroscience, 2012, 32, 9248-9264.	3.6	165
21	Theta-burst stimulation and striatal plasticity in experimental parkinsonism. Experimental Neurology, 2012, 236, 395-398.	4.1	23
22	Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Progress in Neurobiology, 2011, 94, 102-114.	5.7	43
23	Intensification of maternal care by doubleâ€mothering boosts cognitive function and hippocampal morphology in the adult offspring. Hippocampus, 2011, 21, 298-308.	1.9	25
24	Dopamine-Dependent Long-Term Depression Is Expressed in Striatal Spiny Neurons of Both Direct and Indirect Pathways: Implications for Parkinson's Disease. Journal of Neuroscience, 2011, 31, 12513-12522.	3.6	94
25	Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 2011, 134, 375-387.	7.6	125
26	Postsynaptic Alteration of NR2A Subunit and Defective Autophosphorylation of alphaCaMKII at Threonine-286 Contribute to Abnormal Plasticity and Morphology of Upper Motor Neurons in Presymptomatic SOD1G93A Mice, a Murine Model for Amyotrophic Lateral Sclerosis. Cerebral Cortex, 2011, 21, 796-805.	2.9	33
27	Synaptic dysfunction in Parkinson's disease. Biochemical Society Transactions, 2010, 38, 493-497.	3.4	96
28	Distinct Levels of Dopamine Denervation Differentially Alter Striatal Synaptic Plasticity and NMDA Receptor Subunit Composition. Journal of Neuroscience, 2010, 30, 14182-14193.	3.6	155
29	TrkB/BDNF-Dependent Striatal Plasticity and Behavior in a Genetic Model of Epilepsy: Modulation by Valproic Acid. Neuropsychopharmacology, 2010, 35, 1531-1540.	5.4	32
30	Hippocampal Synaptic Plasticity, Memory, and Epilepsy: Effects of Long-Term Valproic Acid Treatment. Biological Psychiatry, 2010, 67, 567-574.	1.3	68
31	mTOR inhibitor rapamycin suppresses striatal post-ischemic LTP. Experimental Neurology, 2010, 226, 328-331.	4.1	23
32	Reelin haploinsufficiency reduces the density of PV+ neurons in circumscribed regions of the striatum and selectively alters striatal-based behaviors. Psychopharmacology, 2009, 204, 511-521.	3.1	34
33	Epilepsyâ€induced abnormal striatal plasticity in Bassoon mutant mice. European Journal of Neuroscience, 2009, 29, 1979-1993.	2.6	26
34	Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behavioural Brain Research, 2009, 199, 108-118.	2.2	115
35	Abnormal medial prefrontal cortex connectivity and defective fear extinction in the presymptomatic G93A SOD1 mouse model of ALS. Genes, Brain and Behavior, 2008, 7, 427-434.	2.2	34
36	Acetyl-l-Carnitine selectively prevents post-ischemic LTP via a possible action on mitochondrial energy metabolism. Neuropharmacology, 2008, 55, 223-229.	4.1	25

CARMELO SGOBIO

#	Article	IF	CITATIONS
37	Striatal synaptic changes in experimental parkinsonism: Role of NMDA receptor trafficking in PSD. Parkinsonism and Related Disorders, 2008, 14, S145-S149.	2.2	14
38	Landmark-based but not vestibular-based orientation elicits mossy fiber synaptogenesis in the mouse hippocampus. Neurobiology of Learning and Memory, 2007, 87, 174-180.	1.9	15
39	Molecular and synaptic changes in the hippocampus underlying superior spatial abilities in pre-symptomatic G93A+/+ mice overexpressing the human Cu/Zn superoxide dismutase (Gly93Â→ÂALA) mutation. Experimental Neurology, 2006, 197, 505-514.	4.1	43
40	Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. European Journal of Neuroscience, 2006, 24, 2061-2070.	2.6	54
41	Plastic and behavioral abnormalities in experimental Huntington's disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 2006, 22, 143-152.	4.4	79
42	Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11557-11562.	7.1	279
43	Reversible inactivation of hippocampus and dorsolateral striatum in C57BL/6 and DBA/2 inbred mice failed to show interaction between memory systems in these genotypes. Behavioural Brain Research, 2004, 154, 527-534.	2.2	15