
Bernd Schnabl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5402112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 397-411.	17.8	905
2	Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 2014, 146, 1513-1524.	1.3	806
3	Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 2017, 25, 1054-1062.e5.	16.2	748
4	New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560, 198-203.	27.8	722
5	Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013. Journal of Hepatology, 2014, 60, 1310-1324.	3.7	685
6	Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology, 2011, 53, 96-105.	7.3	636
7	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	30.7	562
8	Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019, 575, 505-511.	27.8	493
9	Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. Journal of Hepatology, 2015, 63, 1272-1284.	3.7	463
10	Intestinal fungi contribute to development of alcoholic liver disease. Journal of Clinical Investigation, 2017, 127, 2829-2841.	8.2	336
11	Acute-on-chronic liver failure in cirrhosis. Nature Reviews Disease Primers, 2016, 2, 16041.	30.5	320
12	Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. Journal of Hepatology, 2012, 56, 1283-1292.	3.7	289
13	Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing Mucosa-Associated Microbiota and Preventing Bacterial Translocation. Cell Host and Microbe, 2016, 19, 227-239.	11.0	284
14	Supplementation of Saturated Long-Chain Fatty Acids Maintains Intestinal Eubiosis and Reduces Ethanol-induced Liver Injury in Mice. Gastroenterology, 2015, 148, 203-214.e16.	1.3	266
15	Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut, 2019, 68, 359-370.	12.1	236
16	Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut, 2019, 68, 1504-1515.	12.1	202
17	Methods to determine intestinal permeability and bacterial translocation during liver disease. Journal of Immunological Methods, 2015, 421, 44-53.	1.4	199
18	Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 2018, 67, 2150-2166.	7.3	189

#	Article	IF	CITATIONS
19	Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology, 2013, 58, 108-119.	7.3	187
20	Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology, 2019, 17, 218-230.	4.4	187
21	Gut microbiome, liver immunology, and liver diseases. Cellular and Molecular Immunology, 2021, 18, 4-17.	10.5	182
22	Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. Journal of Hepatology, 2018, 69, 51-59.	3.7	178
23	Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nature Communications, 2017, 8, 837.	12.8	174
24	Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019, 70, 260-272.	3.7	170
25	The Gut Microbiota and Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 275-284.	4.5	166
26	Pyroptosis by caspase11/4â€gasderminâ€Ð pathway in alcoholic hepatitis in mice and patients. Hepatology, 2018, 67, 1737-1753.	7.3	165
27	Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB Journal, 2015, 29, 1043-1055.	0.5	156
28	Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology, 2020, 71, 522-538.	7.3	151
29	Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. Journal of Hepatology, 2018, 69, 396-405.	3.7	144
30	Effect of Weight Loss on Magnetic Resonance Imaging Estimation of Liver Fat and Volume in Patients With Nonalcoholic Steatohepatitis. Clinical Gastroenterology and Hepatology, 2015, 13, 561-568.e1.	4.4	128
31	The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. Journal of Hepatology, 2020, 72, 391-400.	3.7	119
32	Gut Microbiome Directs Hepatocytes to Recruit MDSCs and Promote Cholangiocarcinoma. Cancer Discovery, 2021, 11, 1248-1267.	9.4	117
33	Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with nonâ€alcoholic fatty liver disease. British Journal of Pharmacology, 2018, 175, 469-484.	5.4	116
34	Microbiota and Fatty Liver Disease—the Known, the Unknown, and the Future. Cell Host and Microbe, 2020, 28, 233-244.	11.0	115
35	Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut, 2020, 69, 764-780.	12.1	112
36	Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. Journal of Internal Medicine, 2019, 286, 32-40.	6.0	111

#	Article	IF	CITATIONS
37	Toll-Like Receptor 2–Mediated Intestinal Injury and Enteric Tumor Necrosis Factor Receptor I Contribute to Liver Fibrosis in Mice. Gastroenterology, 2012, 143, 1330-1340.e1.	1.3	108
38	The microbiota in cirrhosis and its role in hepatic decompensation. Journal of Hepatology, 2021, 75, S67-S81.	3.7	107
39	Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 159, 1839-1852.	1.3	103
40	Intestinal Microbiota Mediates the Susceptibility to Polymicrobial Sepsisâ€Induced Liver Injury by Granisetron Generation in Mice. Hepatology, 2019, 69, 1751-1767.	7.3	102
41	Origin of myofibroblasts in liver fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S17.	3.4	99
42	Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metabolism, 2021, 33, 21-32.	16.2	98
43	Microbiota Protects Mice Against Acute Alcoholâ€Induced Liver Injury. Alcoholism: Clinical and Experimental Research, 2015, 39, 2313-2323.	2.4	92
44	Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology, 2017, 65, 475-490.	7.3	91
45	Targeting the gut-liver-immune axis to treat cirrhosis. Gut, 2021, 70, 982-994.	12.1	88
46	Bidirectional Communication between Liver and Gut during Alcoholic Liver Disease. Seminars in Liver Disease, 2016, 36, 331-339.	3.6	84
47	Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes, 2020, 12, 1782157.	9.8	83
48	Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clinical Science, 2018, 132, 199-212.	4.3	78
49	Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology, 2020, 72, 2182-2196.	7.3	74
50	Host-Microbiome Interactions in Alcoholic Liver Disease. Gut and Liver, 2014, 8, 237-241.	2.9	73
51	Linking intestinal homeostasis and liver disease. Current Opinion in Gastroenterology, 2013, 29, 264-270.	2.3	71
52	The fecal mycobiome in non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 788-799.	3.7	66
53	Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. American Journal of Physiology - Renal Physiology, 2016, 311, G1018-G1036.	3.4	64
54	Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Research, 2018, 2, 43-51.	1.4	64

#	Article	IF	CITATIONS
55	Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1α Transactivation in Steatohepatitis. Cell Metabolism, 2018, 27, 339-350.e3.	16.2	62
56	An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules, 2021, 11, 530.	4.0	62
57	Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes, 2020, 12, 1785251.	9.8	60
58	Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease?. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1069-1076.	3.0	55
59	Gut microbiota in liver disease: too much is harmful, nothing at all is not helpful either. American Journal of Physiology - Renal Physiology, 2019, 316, G563-G573.	3.4	54
60	Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Translational Research, 2019, 209, 22-38.	5.0	51
61	β-Hydroxybutyrate protects from alcohol-induced liver injury via a Hcar2-cAMP dependent pathway. Journal of Hepatology, 2018, 69, 687-696.	3.7	48
62	Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Reports, 2021, 3, 100220.	4.9	46
63	Bacteriophages and their potential for treatment of gastrointestinal diseases. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 135-144.	17.8	46
64	Dynamic Changes of the Fungal Microbiome in Alcohol Use Disorder. Frontiers in Physiology, 2021, 12, 699253.	2.8	45
65	Insulin Resistance Increases MRI-Estimated Pancreatic Fat in Nonalcoholic Fatty Liver Disease and Normal Controls. Gastroenterology Research and Practice, 2013, 2013, 1-8.	1.5	42
66	Fast-Track Clearance of Bacteria from the Liver. Cell Host and Microbe, 2016, 20, 1-2.	11.0	39
67	Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. American Journal of Physiology - Renal Physiology, 2016, 310, G310-G322.	3.4	38
68	Immunoglobulin A and liver diseases. Journal of Gastroenterology, 2018, 53, 691-700.	5.1	38
69	A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells. Biochemical and Biophysical Research Communications, 2008, 375, 210-214.	2.1	36
70	Complex Network of NKT Cell Subsets Controls Immune Homeostasis in Liver and Gut. Frontiers in Immunology, 2018, 9, 2082.	4.8	35
71	Serum and Fecal Oxylipins in Patients with Alcohol-Related Liver Disease. Digestive Diseases and Sciences, 2019, 64, 1878-1892.	2.3	35
72	Antimicrobial proteins: intestinal guards to protect against liver disease. Journal of Gastroenterology, 2019, 54, 209-217.	5.1	33

#	Article	IF	CITATIONS
73	Promises of microbiome-based therapies. Journal of Hepatology, 2022, 76, 1379-1391.	3.7	33
74	Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes, 2020, 11, 265-275.	9.8	31
75	Weight Loss Decreases Magnetic Resonance Elastography Estimated Liver Stiffness in Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 2017, 15, 463-464.	4.4	29
76	Cytolysinâ€positive <i>Enterococcus faecalis</i> is not increased in patients with nonâ€alcoholic steatohepatitis. Liver International, 2020, 40, 860-865.	3.9	29
77	Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids. Journal of Hepatology, 2014, 60, 1259-1267.	3.7	28
78	Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know?. Physiology, 2020, 35, 261-274.	3.1	28
79	High Protein Intake Is Associated With Histological Disease Activity in Patients With NAFLD. Hepatology Communications, 2020, 4, 681-695.	4.3	28
80	Intestinal virome and therapeutic potential of bacteriophages in liver disease. Journal of Hepatology, 2021, 75, 1465-1475.	3.7	28
81	Aryl Hydrocarbon Receptor Deficiency in Intestinal Epithelial Cells Aggravates Alcohol-Related Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 233-256.	4.5	26
82	YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15184-15193.	7.1	24
83	From intestinal dysbiosis to alcohol-associated liver disease. Clinical and Molecular Hepatology, 2020, 26, 595-605.	8.9	24
84	Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. American Journal of Physiology - Renal Physiology, 2019, 316, G585-G597.	3.4	23
85	Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Coâ€Metabolism in Patients With Alcoholic Hepatitis. Hepatology Communications, 2020, 4, 1168-1182.	4.3	22
86	Multicenter Analysis of Liver Injury Patterns and Mortality in COVID-19. Frontiers in Medicine, 2020, 7, 584342.	2.6	22
87	The gut mycobiome: a novel player in chronic liver diseases. Journal of Gastroenterology, 2021, 56, 1-11.	5.1	22
88	CRIg on liver macrophages clears pathobionts and protects against alcoholic liver disease. Nature Communications, 2021, 12, 7172.	12.8	22
89	Effect of rifaximin on infections, acuteâ€onâ€chronic liver failure and mortality in alcoholic hepatitis: A pilot study (RIFAâ€AH). Liver International, 2022, 42, 1109-1120.	3.9	20
90	Genetic Loss of Immunoglobulin A Does Not Influence Development of Alcoholic Steatohepatitis in Mice. Alcoholism: Clinical and Experimental Research, 2016, 40, 2604-2613.	2.4	19

#	Article	IF	CITATIONS
91	Risk factors for progression of and treatment options for NAFLD in children. Clinical Liver Disease, 2018, 11, 11-15.	2.1	19
92	Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatology Communications, 2022, 6, 2058-2069.	4.3	18
93	Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 891-920.	4.5	17
94	Trajectory of Serum Bilirubin Predicts Spontaneous Recovery in a Real-World Cohort of Patients With Alcoholic Hepatitis. Clinical Gastroenterology and Hepatology, 2022, 20, e289-e297.	4.4	17
95	Roles for the mycobiome in liver disease. Liver International, 2022, 42, 729-741.	3.9	16
96	Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines, 2020, 8, 63.	3.2	15
97	Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice. Hepatology International, 2022, 16, 359-370.	4.2	15
98	What is the potential role of antifibrotic agents for the treatment of liver disease?. Nature Reviews Gastroenterology & Hepatology, 2008, 5, 496-497.	1.7	14
99	Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	4.5	14
100	The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice. Translational Research, 2021, 227, 1-14.	5.0	13
101	Microbial Products and Metabolites Contributing to Alcoholâ€Related Liver Disease. Molecular Nutrition and Food Research, 2021, 65, e2000023.	3.3	13
102	Skin wound closure delay in metabolic syndrome correlates with SCF deficiency in keratinocytes. Scientific Reports, 2020, 10, 21732.	3.3	12
103	Differential Activation of Unconventional T Cells, Including iNKT Cells, in Alcoholâ€Related Liver Disease. Alcoholism: Clinical and Experimental Research, 2020, 44, 1061-1074.	2.4	12
104	Fungi–Bacteria Correlation in Alcoholic Hepatitis Patients. Toxins, 2021, 13, 143.	3.4	12
105	Gut Microbiome and Alcohol-associated Liver Disease. Journal of Clinical and Experimental Hepatology, 2022, 12, 1349-1359.	0.9	12
106	RORÎ ³ t phosphorylation protects against TÂcell-mediated inflammation. Cell Reports, 2022, 38, 110520.	6.4	12
107	Liver cirrhosis and immune dysfunction. International Immunology, 2022, 34, 455-466.	4.0	12
108	Transcriptomic Profiling Identifies Novel Hepatic and Intestinal Genes Following Chronic Plus Binge Ethanol Feeding in Mice. Digestive Diseases and Sciences, 2020, 65, 3592-3604.	2.3	11

#	Article	IF	CITATIONS
109	Functional Microbial Responses to Alcohol Abstinence in Patients With Alcohol Use Disorder. Frontiers in Physiology, 2020, 11, 370.	2.8	11
110	Deficiency of Intestinal α1â€2â€Fucosylation Exacerbates Ethanolâ€Induced Liver Disease in Mice. Alcoholism: Clinical and Experimental Research, 2020, 44, 1842-1851.	2.4	11
111	Combined analysis of gut microbiota, diet and <i>PNPLA3</i> polymorphism in biopsyâ€proven nonâ€alcoholic fatty liver disease. Liver International, 2021, 41, 1576-1591.	3.9	11
112	Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Digestive Diseases and Sciences, 2021, 66, 12-18.	2.3	10
113	New Developments in Microbiome in Alcohol-Associated and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2021, 41, 087-102.	3.6	10
114	Host Factors in Dysregulation of the Gut Barrier Function during Alcohol-Associated Liver Disease. International Journal of Molecular Sciences, 2021, 22, 12687.	4.1	10
115	Liver capsule: Mechanisms of alcoholic hepatitis. Hepatology, 2016, 64, 276-276.	7.3	9
116	Staging of fibrosis in experimental non-alcoholic steatohepatitis by quantitative molecular imaging in rat models. Nuclear Medicine and Biology, 2016, 43, 179-187.	0.6	9
117	Microbiota and Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2016, 40, 1791-1792.	2.4	8
118	A Novel Mouse Model of Acuteâ€onâ€Chronic Cholestatic Alcoholic Liver Disease: A Systems Biology Comparison With Human Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 2020, 44, 87-101.	2.4	8
119	Persistent SARS-CoV-2 RNA Positive in Feces but Negative in Breastmilk: A Case Report of COVID-19 in a Breastfeeding Patient. Frontiers in Medicine, 2020, 7, 562700.	2.6	8
120	Tumor necrosis factor alpha receptor 1 deficiency in hepatocytes does not protect from non-alcoholic steatohepatitis, but attenuates insulin resistance in mice. World Journal of Gastroenterology, 2020, 26, 4933-4944.	3.3	8
121	Serum Acylcarnitines Associated with High Short-Term Mortality in Patients with Alcoholic Hepatitis. Biomolecules, 2021, 11, 281.	4.0	7
122	Role of the Gut Microbiota in Parenteral Nutrition–Associated Liver Disease: From Current Knowledge to Future Opportunities. Journal of Nutrition, 2022, 152, 377-385.	2.9	7
123	Editors' Introduction to the NAFLD and NASH Special Issue. Digestive Diseases and Sciences, 2016, 61, 1211-1213.	2.3	6
124	Colesevelam Reduces Ethanol-Induced Liver Steatosis in Humanized Gnotobiotic Mice. Cells, 2021, 10, 1496.	4.1	6
125	Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis. Metabolites, 2022, 12, 41.	2.9	6
126	Immune Response of an Oral Enterococcus faecalis Phage Cocktail in a Mouse Model of Ethanol-Induced Liver Disease. Viruses, 2022, 14, 490.	3.3	6

#	Article	IF	CITATIONS
127	Lipidomics for the Prediction of Progressive Liver Disease in Patients with Alcohol Use Disorder. Metabolites, 2022, 12, 433.	2.9	6
128	A semiparametric model for betweenâ€subject attributes: Applications to betaâ€diversity of microbiome data. Biometrics, 2022, 78, 950-962.	1.4	5
129	Development of a Robotic Shear Wave Elastography System for Noninvasive Staging of Liver Disease in Murine Models. Hepatology Communications, 2022, 6, 1827-1839.	4.3	5
130	Does the Intestinal Microbiota Explain Differences in the Epidemiology of Liver Disease between East and West?. Inflammatory Intestinal Diseases, 2016, 1, 3-8.	1.9	4
131	Integrative Analysis of Metabolome and Microbiome in Patients with Progressive Alcohol-Associated Liver Disease. Metabolites, 2021, 11, 766.	2.9	3
132	Lamin Deficiency in the Liver Sets the Stage for Nonalcoholic Steatohepatitis Development in Males. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 441-442.	4.5	2
133	Check your microbiota when taking the drug. Hepatology, 2018, 67, 18-20.	7.3	2
134	Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. Zeitschrift Fur Gastroenterologie, 2022, 60, 36-44.	0.5	2
135	Transplanting a fibrogenic microbiota. Hepatology, 2014, 59, 1660-1661.	7.3	1
136	Targeting pathobionts for the treatment of alcoholâ€associated liver disease. Liver International, 2021, 41, 239-240.	3.9	1
137	Peroxisome proliferatorâ€activated receptorâ€Î´as emerging target in liver disease. Drug Development Research, 2010, 71, 106-111.	2.9	Ο
138	Fibroblast growth factor inducible 14 as potential target in patients with alcoholic hepatitis. Gut, 2013, 62, 335-336.	12.1	0
139	Reply to: "Finding fibroblast growth factor 19 during cholestasis: Does x mark the spot?. Journal of Hepatology, 2018, 69, 1400-1401.	3.7	Ο
140	Update on the Role of the Gut Microbiota on Alcohol-Associated Liver Disease. Gastroenterology and Hepatology, 2021, 17, 381-383.	0.1	0