Andrew Alderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5401828/publications.pdf

Version: 2024-02-01

62 papers 3,201 citations

30 h-index 55 g-index

64 all docs

64
docs citations

64 times ranked 1741 citing authors

#	Article	IF	CITATIONS
1	Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review. Composites Part B: Engineering, 2022, 235, 109733.	12.0	111
2	Effect of Compressive Strain Rate on Auxetic Foam. Applied Sciences (Switzerland), 2021, 11, 1207.	2.5	10
3	Fabrication, characterization and analytical modeling of gradient auxetic closed cell foams. Smart Materials and Structures, 2021, 30, 035014.	3.5	12
4	Shear modulus of conventional and auxetic open-cell foam. Mechanics of Materials, 2021, 157, 103818.	3.2	30
5	Effect of steam conversion on the cellular structure, Young's modulus and negative Poisson's ratio of closed-cell foam. Smart Materials and Structures, 2021, 30, 015031.	3.5	11
6	Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored density energy and its implementation for finite element analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 371, 113300.	6.6	8
7	Auxetics and Other Systems with "Negative―Characteristics. Physica Status Solidi (B): Basic Research, 2020, 257, 2000496.	1.5	10
8	Plantar Pressure Distribution under Uniform and Gradient Foam during Running and Jumping. Proceedings (mdpi), 2020, 49, .	0.2	1
9	The use of auxetic materials in tissue engineering. Biomaterials Science, 2020, 8, 2074-2083.	5.4	78
10	Validation of a Finite Element Modeling Process for Auxetic Structures under Impact. Physica Status Solidi (B): Basic Research, 2020, 257, 1900197.	1.5	34
11	Auxetics and Other Systems of Anomalous Characteristics. Physica Status Solidi (B): Basic Research, 2019, 256, 1800736.	1.5	8
12	Effects of Heat Exposure and Volumetric Compression on Poisson's Ratios, Young's Moduli, and Polymeric Composition During Thermoâ€Mechanical Conversion of Auxetic Open Cell Polyurethane Foam. Physica Status Solidi (B): Basic Research, 2019, 256, 1800393.	1.5	23
13	In Vivo Measurement of Surface Pressures and Retraction Distances Applied on Abdominal Organs During Surgery. Surgical Innovation, 2018, 25, 50-56.	0.9	3
14	Controlling Density and Modulus in Auxetic Foam Fabricationsâ€"Implications for Impact and Indentation Testing. Proceedings (mdpi), 2018, 2, 250.	0.2	6
15	Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection. Applied Sciences (Switzerland), 2018, 8, 941.	2.5	188
16	Application of Auxetic Foam in Sports Helmets. Applied Sciences (Switzerland), 2018, 8, 354.	2.5	72
17	The Application of Auxetic Material for Protective Sports Apparel. Proceedings (mdpi), 2018, 2, .	0.2	13
18	Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets. Acta Materialia, 2017, 126, 426-437.	7.9	49

#	Article	IF	CITATIONS
19	Fabrication of Auxetic Foam Sheets for Sports Applications. Physica Status Solidi (B): Basic Research, 2017, 254, 1700596.	1.5	46
20	Auxetic Foam for Snow-Sport Safety Devices. , 2017, , 145-159.		12
21	Largeâ€scale extrusion of auxetic polypropylene fibre. Physica Status Solidi (B): Basic Research, 2016, 253, 1279-1287.	1.5	24
22	Quasi-static characterisation and impact testing of auxetic foam for sports safety applications. Smart Materials and Structures, 2016, 25, 054014.	3.5	54
23	Auxetics in smart systems and structures 2015. Smart Materials and Structures, 2016, 25, 050301.	3.5	5
24	Modeling of negative Poisson's ratio (auxetic) crystalline cellulose lβ. Cellulose, 2016, 23, 3429-3448.	4.9	14
25	A Comparison of Novel and Conventional Fabrication Methods for Auxetic Foams for Sports Safety Applications. Procedia Engineering, 2016, 147, 384-389.	1.2	41
26	Auxetics and other systems of "negative―characteristics. Physica Status Solidi (B): Basic Research, 2016, 253, 1241-1242.	1.5	12
27	Doubleâ€Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties. Advanced Materials, 2016, 28, 10323-10332.	21.0	206
28	Models for the prediction of Poisson's ratio in the  αâ€cristobalite' tetrahedral framework. Physica Status Solidi (B): Basic Research, 2015, 252, 1465-1478.	1.5	21
29	Auxetic Foams for Sport Safety Applications. Procedia Engineering, 2015, 112, 104-109.	1.2	37
30	Auxetics and other systems of "negative―characteristics. Physica Status Solidi (B): Basic Research, 2015, 252, 1421-1425.	1.5	24
31	Auxetic Materials and Related Systems. Physica Status Solidi (B): Basic Research, 2014, 251, 263-266.	1.5	26
32	Auxetic Materials for Sports Applications. Procedia Engineering, 2014, 72, 453-458.	1.2	241
33	Piezomorphic Materials. Macromolecular Materials and Engineering, 2013, 298, 318-327.	3.6	27
34	Modelling of the structure-property relationships in the <i>\hat{l}±-</i> quartz structures. Proceedings of SPIE, 2013, , .	0.8	0
35	Auxetics in smart systems and structures 2013. Smart Materials and Structures, 2013, 22, 080201.	3.5	4
36	Molecular modelling of structure and deformation mechanisms of auxetic behaviour in the $\hat{l}\pm$ -quartz structures. Proceedings of SPIE, 2012, , .	0.8	O

#	Article	IF	Citations
37	Towards auxetic nanofibres: molecular modelling of auxetic behaviour in cellulose II., 2012,,.		О
38	Modelling of the Structure-Property Relationships in Auxetic Nanotube., 2012,,.		0
39	Manufacture and characterisation of thin flat and curved auxetic foam sheets. Physica Status Solidi (B): Basic Research, 2012, 249, 1315-1321.	1.5	50
40	Auxetic warp knit textile structures. Physica Status Solidi (B): Basic Research, 2012, 249, 1322-1329.	1.5	109
41	<i>In situ</i> 3D Xâ€ray microtomography study comparing auxetic and nonâ€auxetic polymeric foams under tension. Physica Status Solidi (B): Basic Research, 2011, 248, 45-51.	1.5	53
42	Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour. Physica Status Solidi (B): Basic Research, 2011, 248, 117-122.	1.5	20
43	Numerical and analytical modelling of multiâ€layer adhesive–film interface systems. Physica Status Solidi (B): Basic Research, 2009, 246, 2072-2082.	1.5	23
44	Can nanotubes display auxetic behaviour?. Physica Status Solidi (B): Basic Research, 2008, 245, 2373-2382.	1.5	32
45	Natrolite: A zeolite with negative Poisson's ratios. Journal of Applied Physics, 2007, 101, 086102.	2.5	107
46	Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson's ratio in composite laminates. Physica Status Solidi (B): Basic Research, 2007, 244, 883-892.	1.5	52
47	Preface: phys. stat. sol. (b) 244/3. Physica Status Solidi (B): Basic Research, 2007, 244, 813-816.	1.5	26
48	Negative Poisson's ratios in cellular foam materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 214-218.	5.6	109
49	An alternative explanation for the negative Poisson's ratios in α-cristobalite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 219-224.	5.6	61
50	Negative Poisson's Ratio Polyester Fibers. Textile Reseach Journal, 2006, 76, 540-546.	2.2	82
51	The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polymer Degradation and Stability, 2005, 88, 114-122.	5.8	108
52	Preface: phys. stat. sol. (b) 242/3. Physica Status Solidi (B): Basic Research, 2005, 242, 497-497.	1.5	43
53	Auxetic Cellular Materials and Structures. , 2005, , 489.		8
54	The Effects of Processing on the Topology and Mechanical Properties of Negative Poisson's Ratio Foams. , 2005, , 503.		7

#	Article	IF	CITATIONS
55	On the Auxetic Properties of `Rotating Rectangles' with Different Connectivity. Journal of the Physical Society of Japan, 2005, 74, 2866-2867.	1.6	88
56	An Alternative Explanation for the Negative Poisson's Ratios in Auxetic Foams. Journal of the Physical Society of Japan, 2005, 74, 1341-1342.	1.6	62
57	On the origin of auxetic behaviour in the silicate α-cristobalite. Journal of Materials Chemistry, 2005, 15, 4003.	6.7	62
58	MOLECULAR MODELLING OF THE DEFORMATION MECHANISMS ACTING IN AUXETIC SILICA. Computational Methods in Science and Technology, 2004, 10, 117-126.	0.3	24
59	NEGATIVE POISSON'S RATIOS FROM ROTATING RECTANGLES. Computational Methods in Science and Technology, 2004, 10, 137-145.	0.3	114
60	Molecular Origin of Auxetic Behavior in Tetrahedral Framework Silicates. Physical Review Letters, 2002, 89, 225503.	7.8	141
61	An Auxetic Filter:Â A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties. Industrial & Engineering Chemistry Research, 2000, 39, 654-665.	3.7	209
62	Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2671.	1.7	131