
## Andrew Alderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5401828/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Auxetic Materials for Sports Applications. Procedia Engineering, 2014, 72, 453-458.                                                                                                                                | 1.2  | 241       |
| 2  | An Auxetic Filter:Â A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties.<br>Industrial & Engineering Chemistry Research, 2000, 39, 654-665.                                             | 3.7  | 209       |
| 3  | Doubleâ€Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative<br>Poisson's Ratio Properties. Advanced Materials, 2016, 28, 10323-10332.                                        | 21.0 | 206       |
| 4  | Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection.<br>Applied Sciences (Switzerland), 2018, 8, 941.                                                                 | 2.5  | 188       |
| 5  | Molecular Origin of Auxetic Behavior in Tetrahedral Framework Silicates. Physical Review Letters, 2002, 89, 225503.                                                                                                | 7.8  | 141       |
| 6  | Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2671.                              | 1.7  | 131       |
| 7  | NEGATIVE POISSON'S RATIOS FROM ROTATING RECTANGLES. Computational Methods in Science and Technology, 2004, 10, 137-145.                                                                                            | 0.3  | 114       |
| 8  | Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review.<br>Composites Part B: Engineering, 2022, 235, 109733.                                                                 | 12.0 | 111       |
| 9  | Negative Poisson's ratios in cellular foam materials. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2006, 423, 214-218.                                   | 5.6  | 109       |
| 10 | Auxetic warp knit textile structures. Physica Status Solidi (B): Basic Research, 2012, 249, 1322-1329.                                                                                                             | 1.5  | 109       |
| 11 | The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polymer Degradation and Stability, 2005, 88, 114-122. | 5.8  | 108       |
| 12 | Natrolite: A zeolite with negative Poisson's ratios. Journal of Applied Physics, 2007, 101, 086102.                                                                                                                | 2.5  | 107       |
| 13 | On the Auxetic Properties of `Rotating Rectangles' with Different Connectivity. Journal of the<br>Physical Society of Japan, 2005, 74, 2866-2867.                                                                  | 1.6  | 88        |
| 14 | Negative Poisson's Ratio Polyester Fibers. Textile Reseach Journal, 2006, 76, 540-546.                                                                                                                             | 2.2  | 82        |
| 15 | The use of auxetic materials in tissue engineering. Biomaterials Science, 2020, 8, 2074-2083.                                                                                                                      | 5.4  | 78        |
| 16 | Application of Auxetic Foam in Sports Helmets. Applied Sciences (Switzerland), 2018, 8, 354.                                                                                                                       | 2.5  | 72        |
| 17 | An Alternative Explanation for the Negative Poisson's Ratios in Auxetic Foams. Journal of the Physical<br>Society of Japan, 2005, 74, 1341-1342.                                                                   | 1.6  | 62        |
| 18 | On the origin of auxetic behaviour in the silicate α-cristobalite. Journal of Materials Chemistry, 2005, 15, 4003.                                                                                                 | 6.7  | 62        |

ANDREW ALDERSON

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An alternative explanation for the negative Poisson's ratios in α-cristobalite. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 219-224. | 5.6 | 61        |
| 20 | Quasi-static characterisation and impact testing of auxetic foam for sports safety applications. Smart<br>Materials and Structures, 2016, 25, 054014.                                                      | 3.5 | 54        |
| 21 | <i>In situ</i> 3D Xâ€ray microtomography study comparing auxetic and nonâ€auxetic polymeric foams<br>under tension. Physica Status Solidi (B): Basic Research, 2011, 248, 45-51.                           | 1.5 | 53        |
| 22 | Modelling the influence of the orientation and fibre reinforcement on the Negative Poisson's ratio in composite laminates. Physica Status Solidi (B): Basic Research, 2007, 244, 883-892.                  | 1.5 | 52        |
| 23 | Manufacture and characterisation of thin flat and curved auxetic foam sheets. Physica Status Solidi<br>(B): Basic Research, 2012, 249, 1315-1321.                                                          | 1.5 | 50        |
| 24 | Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets. Acta<br>Materialia, 2017, 126, 426-437.                                                                           | 7.9 | 49        |
| 25 | Fabrication of Auxetic Foam Sheets for Sports Applications. Physica Status Solidi (B): Basic Research, 2017, 254, 1700596.                                                                                 | 1.5 | 46        |
| 26 | Preface: phys. stat. sol. (b) 242/3. Physica Status Solidi (B): Basic Research, 2005, 242, 497-497.                                                                                                        | 1.5 | 43        |
| 27 | A Comparison of Novel and Conventional Fabrication Methods for Auxetic Foams for Sports Safety<br>Applications. Procedia Engineering, 2016, 147, 384-389.                                                  | 1.2 | 41        |
| 28 | Auxetic Foams for Sport Safety Applications. Procedia Engineering, 2015, 112, 104-109.                                                                                                                     | 1.2 | 37        |
| 29 | Validation of a Finite Element Modeling Process for Auxetic Structures under Impact. Physica Status<br>Solidi (B): Basic Research, 2020, 257, 1900197.                                                     | 1.5 | 34        |
| 30 | Can nanotubes display auxetic behaviour?. Physica Status Solidi (B): Basic Research, 2008, 245,<br>2373-2382.                                                                                              | 1.5 | 32        |
| 31 | Shear modulus of conventional and auxetic open-cell foam. Mechanics of Materials, 2021, 157, 103818.                                                                                                       | 3.2 | 30        |
| 32 | Piezomorphic Materials. Macromolecular Materials and Engineering, 2013, 298, 318-327.                                                                                                                      | 3.6 | 27        |
| 33 | Preface: phys. stat. sol. (b) 244/3. Physica Status Solidi (B): Basic Research, 2007, 244, 813-816.                                                                                                        | 1.5 | 26        |
| 34 | Auxetic Materials and Related Systems. Physica Status Solidi (B): Basic Research, 2014, 251, 263-266.                                                                                                      | 1.5 | 26        |
| 35 | Auxetics and other systems of "negative―characteristics. Physica Status Solidi (B): Basic Research,<br>2015, 252, 1421-1425.                                                                               | 1.5 | 24        |
| 36 | Largeâ€scale extrusion of auxetic polypropylene fibre. Physica Status Solidi (B): Basic Research, 2016, 253,<br>1279-1287.                                                                                 | 1.5 | 24        |

ANDREW ALDERSON

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MOLECULAR MODELLING OF THE DEFORMATION MECHANISMS ACTING IN AUXETIC SILICA. Computational Methods in Science and Technology, 2004, 10, 117-126.                                                                                                                      | 0.3 | 24        |
| 38 | Numerical and analytical modelling of multiâ€layer adhesive–film interface systems. Physica Status<br>Solidi (B): Basic Research, 2009, 246, 2072-2082.                                                                                                              | 1.5 | 23        |
| 39 | Effects of Heat Exposure and Volumetric Compression on Poisson's Ratios, Young's Moduli, and<br>Polymeric Composition During Thermoâ€Mechanical Conversion of Auxetic Open Cell Polyurethane<br>Foam. Physica Status Solidi (B): Basic Research, 2019, 256, 1800393. | 1.5 | 23        |
| 40 | Models for the prediction of Poisson's ratio in the  αâ€cristobalite' tetrahedral framework. Physica<br>Status Solidi (B): Basic Research, 2015, 252, 1465-1478.                                                                                                     | 1.5 | 21        |
| 41 | Modelling and testing of a foldable macrostructure exhibiting auxetic behaviour. Physica Status<br>Solidi (B): Basic Research, 2011, 248, 117-122.                                                                                                                   | 1.5 | 20        |
| 42 | Modeling of negative Poisson's ratio (auxetic) crystalline cellulose Iβ. Cellulose, 2016, 23, 3429-3448.                                                                                                                                                             | 4.9 | 14        |
| 43 | The Application of Auxetic Material for Protective Sports Apparel. Proceedings (mdpi), 2018, 2, .                                                                                                                                                                    | 0.2 | 13        |
| 44 | Auxetics and other systems of "negative―characteristics. Physica Status Solidi (B): Basic Research,<br>2016, 253, 1241-1242.                                                                                                                                         | 1.5 | 12        |
| 45 | Fabrication, characterization and analytical modeling of gradient auxetic closed cell foams. Smart<br>Materials and Structures, 2021, 30, 035014.                                                                                                                    | 3.5 | 12        |
| 46 | Auxetic Foam for Snow-Sport Safety Devices. , 2017, , 145-159.                                                                                                                                                                                                       |     | 12        |
| 47 | Effect of steam conversion on the cellular structure, Young's modulus and negative Poisson's ratio<br>of closed-cell foam. Smart Materials and Structures, 2021, 30, 015031.                                                                                         | 3.5 | 11        |
| 48 | Auxetics and Other Systems with "Negative―Characteristics. Physica Status Solidi (B): Basic Research,<br>2020, 257, 2000496.                                                                                                                                         | 1.5 | 10        |
| 49 | Effect of Compressive Strain Rate on Auxetic Foam. Applied Sciences (Switzerland), 2021, 11, 1207.                                                                                                                                                                   | 2.5 | 10        |
| 50 | Auxetic Cellular Materials and Structures. , 2005, , 489.                                                                                                                                                                                                            |     | 8         |
| 51 | Auxetics and Other Systems of Anomalous Characteristics. Physica Status Solidi (B): Basic Research, 2019, 256, 1800736.                                                                                                                                              | 1.5 | 8         |
| 52 | Auxetic orthotropic materials: Numerical determination of a phenomenological spline-based stored<br>density energy and its implementation for finite element analysis. Computer Methods in Applied<br>Mechanics and Engineering, 2020, 371, 113300.                  | 6.6 | 8         |
| 53 | The Effects of Processing on the Topology and Mechanical Properties of Negative Poisson's Ratio<br>Foams. , 2005, , 503.                                                                                                                                             |     | 7         |
| 54 | Controlling Density and Modulus in Auxetic Foam Fabrications—Implications for Impact and<br>Indentation Testing. Proceedings (mdpi), 2018, 2, 250.                                                                                                                   | 0.2 | 6         |

ANDREW ALDERSON

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Auxetics in smart systems and structures 2015. Smart Materials and Structures, 2016, 25, 050301.                                                        | 3.5 | 5         |
| 56 | Auxetics in smart systems and structures 2013. Smart Materials and Structures, 2013, 22, 080201.                                                        | 3.5 | 4         |
| 57 | In Vivo Measurement of Surface Pressures and Retraction Distances Applied on Abdominal Organs<br>During Surgery. Surgical Innovation, 2018, 25, 50-56.  | 0.9 | 3         |
| 58 | Plantar Pressure Distribution under Uniform and Gradient Foam during Running and Jumping.<br>Proceedings (mdpi), 2020, 49, .                            | 0.2 | 1         |
| 59 | Molecular modelling of structure and deformation mechanisms of auxetic behaviour in the $\hat{l}\pm$ -quartz structures. Proceedings of SPIE, 2012, , . | 0.8 | Ο         |
| 60 | Towards auxetic nanofibres: molecular modelling of auxetic behaviour in cellulose II. , 2012, , .                                                       |     | 0         |
| 61 | Modelling of the Structure-Property Relationships in Auxetic Nanotube. , 2012, , .                                                                      |     | Ο         |
| 62 | Modelling of the structure-property relationships in the <i>α-</i> quartz structures. Proceedings of SPIE, 2013, , .                                    | 0.8 | 0         |